Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Commun Signal ; 22(1): 126, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360719

RESUMO

Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.


Assuntos
Anemia , COVID-19 , Neoplasias Hematológicas , Humanos , SARS-CoV-2 , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/terapia , Fatores de Risco , Anemia/complicações , Anemia/epidemiologia , Anemia/terapia
2.
Biochem Genet ; 62(2): 575-593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37632587

RESUMO

The coenzyme ubiquinone-10 (CoQ10) is not only an important part of the electron transport chain of the mitochondrial inner membrane but also has complex biological functions beyond mitochondrial respiration. It is a natural nutrient that is not only produced by the body but is also found in foods, such as meat, eggs, fish, and vegetable oils. Because some types of cancer reduce CoQ10 blood levels, the use of CoQ10 supplements is recommended for the treatment of cancer patients. The anti-cancer effects of CoQ10 supplementation have been reported in several cancers, including colon and breast cancer. CoQ10 scavenges free radicals to reduce oxidative stress and minimize tissue damage. CoQ10 protects the body from damage caused by chemotherapy drugs by reducing the production of inflammatory cytokines and other inflammatory factors. Recent studies suggest that CoQ10 may be a supplement to pharmacotherapy for hepatocellular carcinoma. This article examines the effects of CoQ10 in hepatocellular carcinoma.

3.
Biochem Genet ; 62(1): 18-39, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37394575

RESUMO

A new era of medical technology in cancer treatment is a directly specific modification of gene expression in tumor cells by nucleic acid delivery. Currently, the main challenge to achieving this goal is to find a non-toxic, safe, and effective strategy for gene transfer to cancer cells. Synthetic composites based on cationic polymers have historically been favored in bioengineering due to their ability to mimic bimolecular structures. Among them, polyethylenimines (PEIs) with superior properties such as a wide range of molecular weight and a flexible structure may propel the development of functional combinations in the biomedical and biomaterial fields. Here, in this review, we will focus on the recent progressions in the formulation optimization of PEI-based polyplex in gene delivery to treat cancer. Also, the effect of PEI's intrinsic characteristics such as structure, molecular weight, and positive charges which influence the gene delivery efficiency will be discussed.


Assuntos
Neoplasias , Polietilenoimina , Polietilenoimina/química , Técnicas de Transferência de Genes , Terapia Genética , Transfecção , Neoplasias/genética , Neoplasias/terapia
4.
Cancer Cell Int ; 23(1): 150, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525217

RESUMO

The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.

5.
Cell Commun Signal ; 21(1): 143, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328876

RESUMO

In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Transição Epitelial-Mesenquimal
6.
Cell Commun Signal ; 21(1): 252, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735675

RESUMO

Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Humanos , Células da Medula Óssea , Proliferação de Células , Transdução de Sinais , Microambiente Tumoral
7.
Inflammopharmacology ; 31(1): 21-35, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36609716

RESUMO

Despite community vaccination against coronavirus disease 2019 (COVID-19) and reduced mortality, there are still challenges in treatment options for the disease. Due to the continuous mutation of SARS-CoV-2 virus and the emergence of new strains, diversity in the use of existing antiviral drugs to combat the epidemic has become a crucial therapeutic chance. As a broad-spectrum antiparasitic and antiviral drug, ivermectin has traditionally been used to treat many types of disease, including DNA and RNA viral infections. Even so, based on currently available data, it is still controversial that ivermectin can be used as one of the effective antiviral agents to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not. The aim of this study was to provide comprehensive information on ivermectin, including its safety and efficacy, as well as its adverse effects in the treatment of COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Ivermectina/uso terapêutico , Antivirais/uso terapêutico
8.
Inflammopharmacology ; 31(3): 1029-1052, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079169

RESUMO

According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as ß cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.


Assuntos
COVID-19 , Diabetes Mellitus , Humanos , SARS-CoV-2 , Síndrome da Liberação de Citocina , Inflamação , Citocinas
9.
Cancer Cell Int ; 22(1): 200, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614494

RESUMO

Cancer can be induced by a variety of possible causes, including tumor suppressor gene failure and proto-oncogene hyperactivation. Tumor-associated extrachromosomal circular DNA has been proposed to endanger human health and speed up the progression of cancer. The amplification of ecDNA has raised the oncogene copy number in numerous malignancies according to whole-genome sequencing on distinct cancer types. The unusual structure and function of ecDNA, and its potential role in understanding current cancer genome maps, make it a hotspot to study tumor pathogenesis and evolution. The discovery of the basic mechanisms of ecDNA in the emergence and growth of malignancies could lead researchers to develop new cancer therapies. Despite recent progress, different aspects of ecDNA require more investigation. We focused on the features, and analyzed the bio-genesis, and origin of ecDNA in this review, as well as its functions in neuroblastoma and glioma cancers.

10.
Cancer Cell Int ; 22(1): 313, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224606

RESUMO

Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.

11.
Cell Commun Signal ; 20(1): 186, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419156

RESUMO

Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Transdução de Sinais , Contagem de Células , Inibidores de Checkpoint Imunológico , Metaboloma
12.
Cell Mol Biol Lett ; 27(1): 37, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562647

RESUMO

In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody's crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a "lectibody" that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).


Assuntos
SARS-CoV-2 , Antivirais/farmacologia , Carboidratos , Lectinas/farmacologia , Glicoproteína da Espícula de Coronavírus
13.
Cell Mol Biol Lett ; 27(1): 60, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883021

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is involved in many immunological processes, including cell growth, proliferation, differentiation, apoptosis, and inflammatory responses. Some of these processes can contribute to cancer progression and neurodegeneration. Owing to the complexity of this pathway and its potential crosstalk with alternative pathways, monotherapy as targeted therapy has usually limited long-term efficacy. Currently, the majority of JAK-STAT-targeting drugs are still at preclinical stages. Meanwhile, a variety of plant polyphenols, especially quercetin, exert their inhibitory effects on the JAK-STAT pathway through known and unknown mechanisms. Quercetin has shown prominent inhibitory effects on the JAK-STAT pathway in terms of anti-inflammatory and antitumor activity, as well as control of neurodegenerative diseases. This review discusses the pharmacological effects of quercetin on the JAK-STAT signaling pathway in solid tumors and neurodegenerative diseases.


Assuntos
Inibidores de Janus Quinases , Neoplasias , Doenças Neurodegenerativas , Humanos , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Transdução de Sinais
14.
Cell Mol Biol Lett ; 27(1): 52, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764927

RESUMO

BACKGROUND: Breast cancer is defined as a biological and molecular heterogeneous disorder that originates from breast cells. Genetic predisposition is the most important factor giving rise to this malignancy. The most notable mutations in breast cancer occur in the BRCA1 and BRCA2 genes. Owing to disease heterogeneity, lack of therapeutic target, anti-cancer drug resistance, residual disease, and recurrence, researchers are faced with challenges in developing strategies to treat patients with breast cancer. RESULTS: It has recently been reported that epigenetic processes such as DNA methylation and histone modification, as well as microRNAs (miRNAs), have potently contributed to the pathophysiology, diagnosis, and treatment of breast cancer. These observations have persuaded researchers to move their therapeutic approaches beyond the genetic framework toward the epigenetic concept. CONCLUSION: Herein we discuss the molecular and epigenetic mechanisms underlying breast cancer progression and resistance as well as various aspects of epigenetic-based therapies as monotherapy and combined with immunotherapy.


Assuntos
Neoplasias da Mama , Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Feminino , Humanos
15.
Cell Mol Biol Lett ; 27(1): 33, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397496

RESUMO

BACKGROUND: Nowadays, conventional medical treatments such as surgery, radiotherapy, and chemotherapy cannot cure all types of cancer. A promising approach to treat solid tumors is the use of tumor-targeting peptides to deliver drugs or active agents selectively. RESULT: Introducing beneficial therapeutic approaches, such as therapeutic peptides and their varied methods of action against tumor cells, can aid researchers in the discovery of novel peptides for cancer treatment. The biomedical applications of therapeutic peptides are highly interesting. These peptides, owing to their high selectivity, specificity, small dimensions, high biocompatibility, and easy modification, provide good opportunities for targeted drug delivery. In recent years, peptides have shown considerable promise as therapeutics or targeting ligands in cancer research and nanotechnology. CONCLUSION:  This study reviews a variety of therapeutic peptides and targeting ligands in cancer therapy. Initially, three types of tumor-homing and cell-penetrating peptides (CPPs) are described, and then their applications in breast, glioma, colorectal, and melanoma cancer research are discussed.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Glioma , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Humanos , Ligantes , Neoplasias/tratamento farmacológico
16.
Cell Mol Biol Lett ; 27(1): 74, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064322

RESUMO

Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.


Assuntos
Artrite , Exossomos , Vesículas Extracelulares , Leucemia , Esclerose Múltipla , Neoplasias , Artrite/metabolismo , Exossomos/metabolismo , Humanos , Leucemia/metabolismo , Esclerose Múltipla/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo
17.
Inflammopharmacology ; 30(5): 1533-1539, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994216

RESUMO

Hesperetin, an aglycone metabolite of hesperidin with high bioavailability, recently gained attention due to its anti-COVID-19 and anti-cancer properties. Multiple studies revealed that cancer patients are prone to experience a severe form of COVID-19 and higher mortality risk. In addition, studies suggested that COVID-19 can potentially lead to cancer progression through multiple mechanisms. This study proposes that hesperetin not only can be used as an anti-COVID-19 agent but also can reduce the risk of multiple cancer progression by suppressing several intracellular signaling pathways in cancer patients with COVID-19. Therefore, in this review, we attempted to provide evidence demonstrating anti-COVID-19/cancer properties of hesperetin with several mechanisms.


Assuntos
Tratamento Farmacológico da COVID-19 , Hesperidina , Neoplasias , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , SARS-CoV-2 , Transdução de Sinais
18.
Biol Proced Online ; 23(1): 8, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618659

RESUMO

The proteostasis network includes all the factors that control the function of proteins in their native state and minimize their non-functional or harmful reactions. The molecular chaperones, the important mediator in the proteostasis network can be considered as any protein that contributes to proper folding and assembly of other macromolecules, through maturating of unfolded or partially folded macromolecules, refolding of stress-denatured proteins, and modifying oligomeric assembly, otherwise it leads to their proteolytic degradation. Viruses that use the hosts' gene expression tools and protein synthesis apparatus to survive and replicate, are obviously protected by such a host chaperone system. This means that many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread. During viral infection, increase in endoplasmic reticulum (ER) stress due to high expression of viral proteins enhances the level of heat shock proteins (HSPs) and induces cell apoptosis or necrosis. Indeed, evidence suggests that ER stress and the induction of unfolded protein response (UPR) may be a major aspect of the corona-host virus interaction. In addition, several clinical reports have confirmed the autoimmune phenomena in COVID-19-patients, and a strong association between this autoimmunity and severe SARS-CoV-2 infection. Part of such autoimmunity is due to shared epitopes among the virus and host. This article reviews the proteostasis network and its relationship to the immune system in SARS-CoV-2 infection.

19.
Reprod Biol Endocrinol ; 19(1): 104, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233693

RESUMO

Structural and physiological changes in sperm and semen parameters reduce fertility in diabetic patients. Securigera Securidaca (S. Securidaca) seed is a herbal medicine with hypoglycemic, antioxidant, and anti-hypertensive effects. The question now is whether this herbal medicine improves fertility in diabetic males. The study aimed to evaluate the effects of hydroalcoholic extract of S. Securidaca seeds (HESS), glibenclamide and a combination of both on fertility in hyperglycemic rats by comparing histological and some biochemical changes in testicular tissue and sperm parameters. The treatment protocol included administration of three doses of HESS and one dose of glibenclamide, as well as treatment with both in diabetic Wistar diabetic rats and comparison of the results with untrated groups. The quality of the testicular tissue as well as histometric parameters and spermatogenesis indices were evaluated during histopathological examination. Epididymal sperm analysis including sperm motility, viability, abnormalities, maturity, and chromatin structure were studied. The effect of HESS on the expression of LDH and FGF21 genes and tissue levels of glycogen, lactate, and total antioxidant capacity in testicular tissue was investigated and compared with glibenclamide. HESS improved sperm parameters in diabetic rats but showed little restorative effect on damaged testicular tissue. In this regard, glibenclamide was more effective than the highest dose of HESS and its combination with HESS enhanced its effectiveness so that histological tissue characteristics and sperm parameters were were comparable to those of healthy rats. The expression level of testicular FGF21 gene increased in diabetic rats, which intensified after treatment with HESS as well as glibenclamide. The combination of HESS and glibenclamide restored the expression level of testicular LDH gene, as well as tissue storage of glycogen, lactate and LDH activity, and serum testosterone to the levels near healthy control. S. Securidaca seeds can be considered as an effective supplement in combination with hypoglycemic drugs to prevent infertility complications in diabetes.


Assuntos
Fatores de Crescimento de Fibroblastos/biossíntese , Glibureto/administração & dosagem , Glicogênio/metabolismo , Hiperglicemia/metabolismo , L-Lactato Desidrogenase/biossíntese , Securidaca , Espermatozoides/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Quimioterapia Combinada , Etanol , Expressão Gênica , Hiperglicemia/tratamento farmacológico , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Sementes , Testículo/efeitos dos fármacos , Testículo/metabolismo , Água
20.
Clin Mol Allergy ; 19(1): 21, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749737

RESUMO

The concern of today's communities is to find a way to prevent or treat COVID-19 and reduce its symptoms in the patients. However, the genetic mutations and more resistant strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge; the designed vaccines and adjuvant therapies would potentially control the symptoms and severity of COVID-19. The most important complication of this viral infection is acute respiratory distress syndrome, which occurs due to the infiltration of leukocytes into the alveoli and the raised cytokine storm. Interferons, as a cytokine family in the host, play an important role in the immune-related antiviral defense and have been considered in the treatment protocols of COVID-19. In addition, it has been indicated that some nutrients, including vitamin D, magnesium and zinc are essential in the modulation of the immune system and interferon (IFN) signaling pathway. Several recent studies have investigated the treatment effect of vitamin D on COVID-19 and reported the association between optimal levels of this vitamin and reduced disease risk. In the present study, the synergistic action of vitamin D, magnesium and zinc in IFN signaling is discussed as a treatment option for COVID-19 involvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA