Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Arch Microbiol ; 198(4): 379-87, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26860842

RESUMO

Phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity and production of siderophores and indole acetic acid (IAA) are well-known traits of plant growth-promoting rhizobacteria (PGPR). Here we investigated the expression of these traits as affected by salinity for three PGPR strains (Pseudomonas fluorescens, Bacillus megaterium and Variovorax paradoxus) at two salinity levels [2 and 5 % NaCl (w/v)]. Among the three strains, growth of B. megaterium was the least affected by high salinity. However, P. fluorescens was the best strain for maintaining ACC-deaminase activity, siderophore and IAA production under stressed conditions. V. paradoxus was the least tolerant to salts and had minimal growth and low PGPR trait expression under salt stress. Results of experiment examining the impact of bacterial inoculation on cucumber growth at three salinity levels [1 (normal), 7 and 10 dS m(-1)] revealed that P. fluorescens also had good rhizosphere competence and was the most effective for alleviating the negative impacts of salinity on cucumber growth. The results suggest that in addition to screening the PGPR regarding their effect on growth under salinity, PGPR trait expression is also an important aspect that may be useful for selecting the most promising PGPR bacterial strains for improving plant tolerance to salinity stress.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cucumis sativus/microbiologia , Cucumis sativus/fisiologia , Tolerância ao Sal/fisiologia , Microbiologia do Solo , Bacillus megaterium/fisiologia , Carbono-Carbono Liases , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Ácidos Indolacéticos/metabolismo , Pseudomonas fluorescens/fisiologia , Salinidade , Sideróforos/genética , Cloreto de Sódio/farmacologia
2.
Heliyon ; 9(7): e17816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483786

RESUMO

This study was undertaken to see how microbial consortia influenced maize development and yield under salt-affected conditions. The efficacy of the pre-isolated bacterial strains Burkholderia phytofirmans, Bacillussubtilis, Enterobacter aerogenes, and Pseudomonas syringae and Pseudomonas fluorescens to decrease the detrimental effects of salt on maize was tested in four distinct combinations using Randomized Complete Block Design with three replicates. The results revealed that these strains were compatible and collaborated synergistically, with an 80% co-aggregation percentage under salt-affected conditions. Following that, these strains were tested for their ability to increase maize growth and yield under salt-affected field conditions. The photosynthetic rate (11-50%), relative water content (10-34%), and grain yield (13-21%) of maize were all increased by these various combinations. However, when Burkholderia phytofirmans, Enterobacter aerogenes and Pseudomonas fluorescens were combined, the greatest increase was seen above the un-inoculated control. Furthermore, as compared to the un-inoculated control, the same combination resulted in a 1.5-fold increase in catalase and a 2.0-fold increase in ascorbate concentration. These findings showed that a multi-strain consortium might boost maize's total yield response as a result of better growth under salt stress.

3.
Environ Sci Pollut Res Int ; 29(30): 46118-46126, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35165842

RESUMO

The uncontrolled industrialization and unrestricted textile production combined with inappropriate effluent treatment services in developing countries like Pakistan have multiplied the number of harmful effluent discharge. These effluents are enriched with dyes, heavy metal ions, and other hazardous materials that are poisonous and carcinogenic to living organisms. For that reason, the utilization of economic and efficient control techniques against such pollutants is imperative to protect natural resources. The triple algal role for phycoremediation of textile effluent was utilized in this study to make it suitable for irrigation and higher biofuel production. Locally isolated two strains, CKW1 (Spirogyra sp.) and PKS33 (Cladophora sp.), were used to treat the effluent collected from the direct outlets of the textile industries. The treated effluent was then tested for its toxicity and applied to wheat at initial stage grown under axenic conditions to check its effect on wheat (Triticum aestivum L.) vegetative growth and development. Finally, the algal biomass obtained after treatment was subjected to trans-esterification for predicting the amount of biodiesel production. Study outcomes revealed that the algal strains were able to decolorize the effluent entirely within 96-120 h. Compared to un-treated textile effluent, the phycoremediated wastewater application to wheat plants enhanced the plant biomass by 80%. Lastly, the production of biodiesel from algal biomass attained after phycoremediation was 35% less to algal biomass obtained under normal growth conditions. It can be concluded that the algal use helps to treat the contaminated effluent and marks them re-usable for irrigating plants and producing biomass which could be utilized for biodiesel production.


Assuntos
Biocombustíveis , Metais Pesados , Biomassa , Têxteis , Triticum , Águas Residuárias
4.
Front Microbiol ; 13: 958522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246246

RESUMO

Owing to inconsistent results of a single bacterial strain, co-inoculation of more than one strain under salinity stress could be a more effective strategy to induce salt tolerance. Co-inoculation of more than one bacterial strain could be more effective due to the presence of several growths promoting traits. This study was conducted to evaluate the effectiveness of multi-strains bacterial consortium to promote wheat growth under salinity stress. Several plant growth promoting rhizobacteria (PGPR) had been isolated and tested for their ability to grow in increasing concentrations of sodium chloride (NaCl). Those rhizobacterial strains having tolerance against salinity were screened to evaluate their ability to promote wheat growth in the presence of salinity by conducting jar trials under axenic conditions. The rhizobacteria with promising results were tested for their compatibility with each other before developing multi-strain inoculum of PGPR. The compatible PGPR strains were characterized, and multi-strain inoculum was then evaluated for promoting wheat growth under axenic conditions at different salinity levels, i.e., 2.1 (normal soil), 6, 12, and 18 dS m-1. The most promising combination was further evaluated by conducting a pot trial in the greenhouse. The results showed that compared to a single rhizobacterial strain, better growth-promoting effect was observed when rhizobacterial strains were co-inoculated. The multi-strain consortium of PGPR caused a significant positive impact on shoot length, root length, shoot fresh weight, and root fresh weight of wheat at the highest salinity level in the jar as well as in the pot trial. Results showed that the multi-strain consortium of PGPR caused significant positive effects on the biochemical traits of wheat by decreasing electrolyte leakage and increasing chlorophyll contents, relative water contents (RWC), and K/Na ratio. It can be concluded that a multi-strain consortium of PGPR (Ensifer adhaerens strain BK-30, Pseudomonas fluorescens strain SN5, and Bacillus megaterium strain SN15) could be more effective to combat the salinity stress owing to the presence of a variety of growth-promoting traits. However, further work is going on to evaluate the efficacy of multi-strain inoculum of PGPR under salt-affected field conditions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33922303

RESUMO

Soil pollution with heavy metal is a serious problem across the globe and is on the rise due to the current intensification of chemical industry. The leather industry is one of them, discharging chromium (Cr) in huge quantities during the process of leather tanning and polluting the nearby land and water resources, resulting in deterioration of plant growth. In this study, the effects of biochar application at the rate of 3% were studied on four maize cultivars, namely NK-8441, P-1543, NK-8711, and FH-985, grown in two different tannery polluted Kasur (K) and Sialkot (S) soils. Maize plants were harvested at vegetative growth and results showed that Cr toxicity adversely not only affected their growth, physiology, and biochemistry, but also accumulated in their tissues. However, the level of Cr toxicity, accumulation, and its influence on maize cultivars varied greatly in both soils. In this pot experiment, biochar application played a crucial role in lessening the Cr toxicity level, resulting in significant increase in plant height, biomass (fresh and dry), leaf area, chlorophyll pigments, photosynthesis, and relative water content (RWC) over treatment set as a control. However, applied biochar significantly decreased the electrolyte leakage (EL), antioxidant enzymes, lipid peroxidation, proline content, soluble sugars, and available fraction of Cr in soil as well as Cr (VI and III) concentration in root and shoot tissues of maize plant. In addition to this, maize cultivar differences were also found in relation to their tolerance to Cr toxicity and cultivar P-1543 performed better over other cultivars in both soils. In conclusion, biochar application in tannery polluted soils could be an efficient ecofriendly approach to reduce the Cr toxicity and to promote plant health and growth.


Assuntos
Cromo , Poluentes do Solo , Carvão Vegetal , Cromo/análise , Cromo/toxicidade , Poluição Ambiental , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zea mays
6.
Arch Microbiol ; 191(5): 415-24, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19255743

RESUMO

Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m(-1). Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m(-1). Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m(-1). Similarly, chlorophyll content and K(+)/Na(+) of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.


Assuntos
Carbono-Carbono Liases/biossíntese , Pseudomonas/enzimologia , Serratia/enzimologia , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Clorofila/análise , Grão Comestível/crescimento & desenvolvimento , Etilenos/antagonistas & inibidores , Etilenos/metabolismo , Folhas de Planta/química , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Potássio/análise , Pseudomonas/metabolismo , Sais , Serratia/metabolismo , Sódio/análise , Estresse Fisiológico
7.
Can J Microbiol ; 55(11): 1302-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19940939

RESUMO

Salt stress is one of the major constraints hampering agricultural production owing to its impact on ethylene production and nutritional imbalance. A check on the accelerated ethylene production in plants could be helpful in minimizing the negative effect of salt stress on plant growth and development. Four Pseudomonas, 1 Flavobacterium, and 1 Enterobacter strain of plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase were selected and their effects on growth and yield of maize were investigated to improve the salt tolerance of maize grown on salt-affected fields. The selected rhizobacterial isolates reduced or eliminated the classical "triple" response, indicating their ability to reduce stress-induced ethylene levels. Results showed that rhizobacterial strains, particularly Pseudomonas and Enterobacter spp., significantly promoted the growth and yield of maize compared with the non-inoculated control. Pseudomonas fluorescens increased plant height, biomass, cob yield, grain yield, 1000 grain mass, and straw yield of maize up to 29%, 127%, 67%, 60%, 17%, and 166%, respectively, over the control. Under stress conditions, more N, P, and K uptake and high K+-Na+ ratios were recorded in inoculated plants compared with the control. The results imply that inoculation with plant growth promoting rhizobacteria containing ACC-deaminase could be a useful approach for improving growth and yield of maize under salt-stressed conditions.


Assuntos
Alphaproteobacteria/enzimologia , Carbono-Carbono Liases/metabolismo , Tolerância ao Sal , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Agricultura , Alphaproteobacteria/fisiologia , Paquistão , Simbiose , Zea mays/microbiologia , Zea mays/fisiologia
8.
Chemosphere ; 190: 234-242, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28992475

RESUMO

A pot experiment was conducted to evaluate the potential of two plant growth promoting rhizobacteria (PGPR) viz. Bacillus sp. CIK-516 and Stenotrophomonas sp. CIK-517Y for improving the growth and Ni uptake of radish (Raphanus sativus) in the presence of four different levels of Ni contamination (0, 50, 100, 150 mg Ni kg-1 soil). Plant growth, dry biomass, chlorophyll and nitrogen contents were significantly reduced by the exogenous application of Ni, however, bacterial inoculation diluted the negative impacts of Ni stress on radish by improving these parameters. PGPR strain CIK-516 increased root length (9-27%), shoot length (8-27%), root dry biomass (2-32%), shoot dry biomass (9-51%), root girth (6-48%), total chlorophyll (4-38%) and shoot nitrogen contents (11-15%) in Ni contaminated and non-contaminated soils. Positive regulation of chlorophyll and nitrogen contents by the inoculated plants shows plant tolerance mechanism of Ni stress. Bacterial strain (CIK-516) exhibited indole acetic acid and 1-amino-cyclopropane-1-carboxylate deaminase potentials which would have helped radish plant to stabilize in Ni contaminated soil and thereby increased Ni uptake (24-257 in shoot and 58-609 in root mg kg-1 dry biomass) and facilitated accumulation in radish (bioaccumulation factor = 0.6-1.7) depending upon soil Ni contamination. Based on the findings of this study, it might be suggested that inoculation with bacterial strain CIK-516 could be an efficient tool for enhanced Ni phytoextraction in radish.


Assuntos
Recuperação e Remediação Ambiental/métodos , Níquel/isolamento & purificação , Raphanus/microbiologia , Poluentes do Solo/isolamento & purificação , Inoculantes Agrícolas , Bacillus/metabolismo , Clorofila/análise , Níquel/farmacologia , Nitrogênio/análise , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raphanus/crescimento & desenvolvimento , Rhizobiaceae/metabolismo , Poluentes do Solo/farmacocinética
9.
Biotechnol Adv ; 32(2): 429-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24380797

RESUMO

Both biotic and abiotic stresses are major constrains to agricultural production. Under stress conditions, plant growth is affected by a number of factors such as hormonal and nutritional imbalance, ion toxicity, physiological disorders, susceptibility to diseases, etc. Plant growth under stress conditions may be enhanced by the application of microbial inoculation including plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi. These microbes can promote plant growth by regulating nutritional and hormonal balance, producing plant growth regulators, solubilizing nutrients and inducing resistance against plant pathogens. In addition to their interactions with plants, these microbes also show synergistic as well as antagonistic interactions with other microbes in the soil environment. These interactions may be vital for sustainable agriculture because they mainly depend on biological processes rather than on agrochemicals to maintain plant growth and development as well as proper soil health under stress conditions. A number of research articles can be deciphered from the literature, which shows the role of rhizobacteria and mycorrhizae alone and/or in combination in enhancing plant growth under stress conditions. However, in contrast, a few review papers are available which discuss the synergistic interactions between rhizobacteria and mycorrhizae for enhancing plant growth under normal (non-stress) or stressful environments. Biological interactions between PGPR and mycorrhizal fungi are believed to cause a cumulative effect on all rhizosphere components, and these interactions are also affected by environmental factors such as soil type, nutrition, moisture and temperature. The present review comprehensively discusses recent developments on the effectiveness of PGPR and mycorrhizal fungi for enhancing plant growth under stressful environments. The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for enhancing plant growth under stress conditions have been discussed at length in this review. Growth promotion by single and dual inoculation of PGPR and mycorrhizal fungi under stress conditions have also been discussed and reviewed comprehensively.


Assuntos
Bactérias , Produtos Agrícolas , Micorrizas , Estresse Fisiológico , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia
10.
Can J Microbiol ; 53(10): 1141-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18026206

RESUMO

Twenty rhizobacterial strains containing 1-aminocyclopropane-1-carboxylate deaminase were isolated from the rhizosphere of salt-affected maize fields. They were screened for their growth-promoting activities under axenic conditions at 1, 4, 8, and 12 dS x m-1 salinity levels. Based upon the data of the axenic study, the 6 most effective strains were selected to conduct pot trials in the wire house. Besides one original salinity level (1.6 dS x m-1), 3 other salinity levels (4, 8, and 12 dS x m-1) were maintained in pots and maize seeds inoculated with selected strains of plant growth-promoting rhizobacteria, as well as uninoculated controls were sown. Results showed that the increase in salinity level decreased the growth of maize seedlings. However, inoculation with rhizobacterial strains reduced this depression effect and improved the growth and yield at all the salinity levels tested. Selected strains significantly increased plant height, root length, total biomass, cob mass, and grain yield up to 82%, 93%, 51%, 40%, and 50%, respectively, over respective uninoculated controls at the electrical conductivity of 12 dS x m-1. Among various plant growth-promoting rhizobacterial strains, S5 (Pseudomonas syringae), S14 (Enterobacter aerogenes), and S20 (Pseudomonas fluorescens) were the most effective strains for promoting the growth and yield of maize, even at high salt stress. The relatively better salt tolerance of inoculated plants was associated with a high K+/Na+ ratio as well as high relative water and chlorophyll and low proline contents.


Assuntos
Bactérias/enzimologia , Carbono-Carbono Liases/metabolismo , Cloreto de Sódio/farmacologia , Zea mays/crescimento & desenvolvimento , Bactérias/classificação , Enterobacter aerogenes/enzimologia , Microbiologia Ambiental , Flavobacterium/enzimologia , Resposta ao Choque Térmico , Raízes de Plantas/microbiologia , Pseudomonas/classificação , Pseudomonas/enzimologia , Cloreto de Sódio/química , Solo/análise , Microbiologia do Solo , Zea mays/efeitos dos fármacos , Zea mays/microbiologia , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA