RESUMO
Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.
Assuntos
Modelos Biológicos , Retina/fisiologia , Vias Visuais , Algoritmos , Células Amácrinas/metabolismo , Interneurônios/metabolismo , Células Ganglionares da Retina/metabolismo , Células Horizontais da Retina/metabolismo , Transmissão SinápticaRESUMO
A central question in neuroscience is how sensory inputs are transformed into percepts. At this point, it is clear that this process is strongly influenced by prior knowledge of the sensory environment. Bayesian ideal observer models provide a useful link between data and theory that can help researchers evaluate how prior knowledge is represented and integrated with incoming sensory information. However, the statistical prior employed by a Bayesian observer cannot be measured directly, and must instead be inferred from behavioral measurements. Here, we review the general problem of inferring priors from psychophysical data, and the simple solution that follows from assuming a prior that is a Gaussian probability distribution. As our understanding of sensory processing advances, however, there is an increasing need for methods to flexibly recover the shape of Bayesian priors that are not well approximated by elementary functions. To address this issue, we describe a novel approach that applies to arbitrary prior shapes, which we parameterize using mixtures of Gaussian distributions. After incorporating a simple approximation, this method produces an analytical solution for psychophysical quantities that can be numerically optimized to recover the shapes of Bayesian priors. This approach offers advantages in flexibility, while still providing an analytical framework for many scenarios. We provide a MATLAB toolbox implementing key computations described herein.