Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 41(4): 409-18, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329879

RESUMO

Polyadenylation of mRNA precursors is frequently coupled to transcription by RNA polymerase II. Although this coupling is known to involve interactions with the C-terminal domain of the RNA polymerase II largest subunit, the possible role of other factors is not known. Here we show that a prototypical transcriptional activator, GAL4-VP16, stimulates transcription-coupled polyadenylation in vitro. In the absence of GAL4-VP16, specifically initiated transcripts accumulated but little polyadenylation was observed, while in its presence polyadenylation was strongly enhanced. We further show that this stimulation requires the transcription elongation-associated PAF complex (PAF1c), as PAF1c depletion blocked GAL4-VP16-stimulated polyadenylation. Furthermore, knockdown of PAF subunits by siRNA resulted in decreased 3' cleavage, and nuclear export, of mRNA in vivo. Finally, we show that GAL4-VP16 interacts directly with PAF1c and recruits it to DNA templates. Our results indicate that a transcription activator can stimulate transcription-coupled 3' processing and does so via interaction with PAF1c.


Assuntos
Poliadenilação , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Células Cultivadas , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Transativadores/genética , Transcrição Gênica , Transfecção
2.
Nucleic Acids Res ; 45(12): e117, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28525643

RESUMO

Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information.


Assuntos
Aptâmeros de Nucleotídeos/síntese química , Técnicas Biossensoriais/métodos , Separação Celular/métodos , Biossíntese de Proteínas , RNA Mensageiro/química , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sítios de Ligação , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transfecção
3.
Nucleic Acids Res ; 45(9): 5423-5436, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28119416

RESUMO

Human RNA methyltransferase BCDIN3D is overexpressed in breast cancer cells, and is related to the tumorigenic phenotype and poor prognosis of breast cancer. Here, we show that cytoplasmic tRNAHis is the primary target of BCDIN3D in human cells. Recombinant human BCDIN3D, expressed in Escherichia coli, monomethylates the 5΄-monophosphate of cytoplasmic tRNAHis efficiently in vitro. In BCDN3D-knockout cells, established by CRISPR/Cas9 editing, the methyl moiety at the 5΄-monophosphate of cytoplasmic tRNAHis is lost, and the exogenous expression of BCDIN3D in the knockout cells restores the modification in cytoplasmic tRNAHis. BCIDN3D recognizes the 5΄-guanosine nucleoside at position -1 (G-1) and the eight-nucleotide acceptor helix with the G-1-A73 mis-pair at the top of the acceptor stem of cytoplasmic tRNAHis, which are exceptional structural features among cytoplasmic tRNA species. While the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis affects neither the overall aminoacylation process in vitro nor the steady-state level of cytoplasmic tRNAHisin vivo, it protects the cytoplasmic tRNAHis transcript from degradation in vitro. Thus, BCDIN3D acts as a cytoplasmic tRNAHis-specific 5΄-methylphosphate capping enzyme. The present results also suggest the possible involvement of the monomethylation of the 5΄-monophosphate of cytoplasmic tRNAHis and/or cytoplasmic tRNAHis itself in the tumorigenesis of breast cancer cells.


Assuntos
Metiltransferases/metabolismo , RNA de Transferência de Histidina/metabolismo , Aminoacilação , Sequência de Bases , Citoplasma/metabolismo , Células HEK293 , Humanos , Metilação , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA de Transferência de Histidina/química , RNA de Transferência de Histidina/genética
4.
Nature ; 467(7316): 729-33, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20861839

RESUMO

Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3'-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs); it also participates in transcription initiation and termination by RNA polymerase II (Pol II). Symplekin mediates interactions between many different proteins in this machinery, although the molecular basis for its function is not known. Here we report the crystal structure at 2.4 Å resolution of the amino-terminal domain (residues 30-340) of human symplekin in a ternary complex with the Pol II carboxy-terminal domain (CTD) Ser 5 phosphatase Ssu72 (refs 7, 10-17) and a CTD Ser 5 phosphopeptide. The N-terminal domain of symplekin has the ARM or HEAT fold, with seven pairs of antiparallel α-helices arranged in the shape of an arc. The structure of Ssu72 has some similarity to that of low-molecular-mass phosphotyrosine protein phosphatase, although Ssu72 has a unique active-site landscape as well as extra structural features at the C terminus that are important for interaction with symplekin. Ssu72 is bound to the concave face of symplekin, and engineered mutations in this interface can abolish interactions between the two proteins. The CTD peptide is bound in the active site of Ssu72, with the pSer 5-Pro 6 peptide bond in the cis configuration, which contrasts with all other known CTD peptide conformations. Although the active site of Ssu72 is about 25 Å from the interface with symplekin, we found that the symplekin N-terminal domain stimulates Ssu72 CTD phosphatase activity in vitro. Furthermore, the N-terminal domain of symplekin inhibits polyadenylation in vitro, but only when coupled to transcription. Because catalytically active Ssu72 overcomes this inhibition, our results show a role for mammalian Ssu72 in transcription-coupled pre-mRNA 3'-end processing.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosfopeptídeos/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Drosophila/química , Humanos , Modelos Moleculares , Proteínas Nucleares/genética , Fosfopeptídeos/química , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Poliadenilação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato , Fatores de Poliadenilação e Clivagem de mRNA/química
5.
Proc Natl Acad Sci U S A ; 106(3): 755-60, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19136632

RESUMO

The CDC73 tumor suppressor gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. Its product, the Cdc73 protein, is a component of the RNA polymerase II and chromatin-associated human Paf1 complex (Paf1C). Here, we show that Cdc73 physically associates with the cleavage and polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF) complexes that are required for the maturation of mRNA 3' ends in the cell nucleus. Immunodepletion experiments indicate that the Cdc73-CPSF-CstF complex is necessary for 3' mRNA processing in vitro. Microarray analysis of CDC73 siRNA-treated cells revealed INTS6, a gene encoding a subunit of the Integrator complex, as an in vivo Cdc73 target. Cdc73 depletion by siRNA resulted in decreased INTS6 mRNA abundance, and decreased association of CPSF and CstF subunits with the INTS6 locus. Our results suggest that Cdc73 facilitates association of 3' mRNA processing factors with actively-transcribed chromatin and support the importance of links between tumor suppression and mRNA maturation.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/fisiologia , Fator Estimulador de Clivagem/fisiologia , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Fator de Especificidade de Clivagem e Poliadenilação/química , Fator Estimulador de Clivagem/química , Humanos , Proteínas de Ligação a RNA , Proteínas Ribossômicas/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
7.
RNA Biol ; 8(6): 964-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21941122

RESUMO

3' processing of mRNA precursors is frequently coupled to transcription by RNA polymerase II (RNAP II). This coupling is well known to involve the C-terminal domain of the RNAP II largest subunit, but a variety of other transcription-associated factors have also been suggested to mediate coupling. Our recent studies have provided direct evidence that transcriptional activators can enhance the efficiency of transcription-coupled 3' processing. In this point-of-view, we discuss the mechanisms that underlie coupling, and their implications for control of alternative polyadenylation, which is emerging as a significant regulator of cell growth control.


Assuntos
Poliadenilação , Precursores de RNA/genética , Transativadores/metabolismo , Ativação Transcricional , Regiões 3' não Traduzidas/genética , Animais , Humanos , Modelos Genéticos , Poli A/genética , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica
8.
Biochim Biophys Acta ; 1779(4): 266-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18312863

RESUMO

Polyadenylation in animal mitochondria is very unique. Unlike other systems, polyadenylation is needed to generate UAA stop codons that are not encoded in mitochondrial (mt) DNA. In some cases, polyadenylation is required for the mt tRNA maturation by editing of its 3' termini. Furthermore, recent studies on human mt poly(A) polymerase (PAP) and PNPase provide new insights and questions for the regulatory mechanism and functional role of polyadenylation in human mitochondria.


Assuntos
Códon de Terminação/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Poliadenilação/fisiologia , Polinucleotídeo Adenililtransferase/metabolismo , Animais , Códon de Terminação/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Polinucleotídeo Adenililtransferase/genética
10.
Nat Commun ; 10(1): 1960, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036859

RESUMO

Lin28-dependent oligo-uridylylation of precursor let-7 (pre-let-7) by terminal uridylyltransferase 4/7 (TUT4/7) represses let-7 expression by blocking Dicer processing, and regulates cell differentiation and proliferation. The interaction between the Lin28:pre-let-7 complex and the N-terminal Lin28-interacting module (LIM) of TUT4/7 is required for pre-let-7 oligo-uridylylation by the C-terminal catalytic module (CM) of TUT4/7. Here, we report crystallographic and biochemical analyses of the LIM of human TUT4. The LIM consists of the N-terminal Cys2His2-type zinc finger (ZF) and the non-catalytic nucleotidyltransferase domain (nc-NTD). The ZF of LIM adopts a distinct structural domain, and its structure is homologous to those of double-stranded RNA binding zinc fingers. The interaction between the ZF and pre-let-7 stabilizes the Lin28:pre-let-7:TUT4 ternary complex, and enhances the oligo-uridylylation reaction by the CM. Thus, the ZF in LIM and the zinc-knuckle in the CM, which interacts with the oligo-uridylylated tail, together facilitate Lin28-dependent pre-let-7 oligo-uridylylation.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/metabolismo , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Humanos , MicroRNAs/genética , Ligação Proteica , RNA Nucleotidiltransferases/genética , Proteínas de Ligação a RNA/genética
11.
Life (Basel) ; 8(4)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400226

RESUMO

Membrane proteins are important drug targets which play a pivotal role in various cellular activities. However, unlike cytosolic proteins, most of them are difficult-to-express proteins. In this study, to synthesize and produce sufficient quantities of membrane proteins for functional and structural analysis, we used a bottom-up approach in a reconstituted cell-free synthesis system, the PURE system, supplemented with artificial lipid mimetics or micelles. Membrane proteins were synthesized by the cell-free system and integrated into lipid bilayers co-translationally. Membrane proteins such as the G-protein coupled receptors were expressed in the PURE system and a productivity ranging from 0.04 to 0.1 mg per mL of reaction was achieved with a correct secondary structure as predicted by circular dichroism spectrum. In addition, a ligand binding constant of 27.8 nM in lipid nanodisc and 39.4 nM in micelle was obtained by surface plasmon resonance and the membrane protein localization was confirmed by confocal microscopy in giant unilamellar vesicles. We found that our method is a promising approach to study the different classes of membrane proteins in their native-like artificial lipid bilayer environment for functional and structural studies.

12.
Nat Commun ; 8: 15788, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589955

RESUMO

The terminal uridylyltransferase, TUT1, builds or repairs the 3'-oligo-uridylylated tail of U6 snRNA. The 3'-oligo-uridylylated tail is the Lsm-binding site for U4/U6 di-snRNP formation and U6 snRNA recycling for pre-mRNA splicing. Here, we report crystallographic and biochemical analyses of human TUT1, which revealed the mechanisms for the specific uridylylation of the 3'-end of U6 snRNA by TUT1. The O2 and O4 atoms of the UTP base form hydrogen bonds with the conserved His and Asn in the catalytic pocket, respectively, and TUT1 preferentially incorporates UMP onto the 3'-end of RNAs. TUT1 recognizes the entire U6 snRNA molecule by its catalytic domains, N-terminal RNA-recognition motifs and a previously unidentified C-terminal RNA-binding domain. Each domain recognizes specific regions within U6 snRNA, and the recognition is coupled with the domain movements and U6 snRNA structural changes. Hence, TUT1 functions as the U6 snRNA-specific terminal uridylyltransferase required for pre-mRNA splicing.


Assuntos
Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , RNA Nuclear Pequeno/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Nucleotidiltransferases/genética , Domínios Proteicos , Splicing de RNA , Especificidade por Substrato
13.
Methods Mol Biol ; 1125: 65-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24590780

RESUMO

In vitro assays have provided a valuable tool to study the mechanism of 3' processing of eukaryotic mRNA precursors and have contributed a great deal to the identification of factors that carry out and regulate 3' processing. Previously, we have shown that transcriptional activators directly enhance polyadenylation by utilizing in vitro transcription-coupled polyadenylation with the prototypical transcription activator GAL4-VP16. In this chapter, we describe a detailed protocol for this assay, which will be useful in examining potential roles for other transcription-related factors in 3' processing and other questions related to the coupling of transcription and mRNA polyadenylation.


Assuntos
Poliadenilação/fisiologia , RNA Mensageiro/metabolismo , Transativadores/metabolismo
14.
Structure ; 19(2): 232-43, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21300291

RESUMO

PolyA polymerase (PAP) adds a polyA tail onto the 3'-end of RNAs without a nucleic acid template, using adenosine-5'-triphosphate (ATP) as a substrate. The mechanism for the substrate selection by eubacterial PAP remains obscure. Structural and biochemical studies of Escherichia coli PAP (EcPAP) revealed that the shape and size of the nucleobase-interacting pocket of EcPAP are maintained by an intra-molecular hydrogen-network, making it suitable for the accommodation of only ATP, using a single amino acid, Arg(197). The pocket structure is sustained by interactions between the catalytic domain and the RNA-binding domain. EcPAP has a flexible basic C-terminal region that contributes to optimal RNA translocation for processive adenosine 5'-monophosphate (AMP) incorporations onto the 3'-end of RNAs. A comparison of the EcPAP structure with those of other template-independent RNA polymerases suggests that structural changes of domain(s) outside the conserved catalytic core domain altered the substrate specificities of the template-independent RNA polymerases.


Assuntos
Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA/metabolismo , Sequência de Aminoácidos , Arginina/química , Arginina/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Moldes Genéticos
15.
J Biol Chem ; 280(20): 19721-7, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15769737

RESUMO

Mammalian mitochondrial (mt) mRNAs have short poly(A) tails at their 3' termini that are post-transcriptionally synthesized by mt poly(A) polymerase (PAP). The polyadenylation of mt mRNAs is known to be a key process needed to create UAA stop codons that are not encoded in mtDNA. In some cases, polyadenylation is required for the tRNA maturation by editing of its 3' terminus. However, little is known about the functional roles the poly(A) tail of mt mRNAs plays in mt translation and RNA turnover. Here we show human mt PAP (hmtPAP) and human polynucleotide phosphorylase (hPNPase) control poly(A) synthesis in human mitochondria. Partial inactivation of hmtPAP by RNA interference using small interfering RNA in HeLa cells resulted in shortened poly(A) tails and decreased steady state levels of some mt mRNAs as well as their translational products. Moreover, knocking down hmtPAP generated markedly defective mt membrane potentials and reduced oxygen consumption. In contrast, knocking down hPNPase showed significantly extended poly(A) tails of mt mRNAs. These results demonstrate that the poly(A) length of human mt mRNAs is controlled by polyadenylation by hmtPAP and deadenylation by hPNPase, and polyadenylation is required for the stability of mt mRNAs.


Assuntos
Polinucleotídeo Adenililtransferase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Mensageiro/metabolismo , RNA/metabolismo , Sequência de Bases , DNA Complementar/genética , Células HeLa , Humanos , Técnicas In Vitro , Mitocôndrias/metabolismo , Modelos Moleculares , Polinucleotídeo Adenililtransferase/antagonistas & inibidores , Polinucleotídeo Adenililtransferase/genética , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mitocondrial , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
16.
J Biol Chem ; 278(19): 16828-33, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12621050

RESUMO

Pathogenic point mutations in mitochondrial tRNA genes are known to cause a variety of human mitochondrial diseases. Reports have associated an A4317G mutation in the mitochondrial tRNA(Ile) gene with fatal infantile cardiomyopathy and an A10044G mutation in the mitochondrial tRNA(Gly) gene with sudden infant death syndrome. Here we demonstrate that both mutations inhibit in vitro CCA-addition to the respective tRNA by the human mitochondrial CCA-adding enzyme. Structures of these two mutant tRNAs were examined by nuclease probing. In the case of the A4317G tRNA(Ile) mutant, structural rearrangement of the T-arm region, conferring an aberrantly stable T-arm structure and an increased T(m) value, was clearly observed. In the case of the A10044G tRNA(Gly) mutant, high nuclease sensitivity in both the T- and D-loops suggested a weakened interaction between the loops. These are the first reported instances of inefficient CCA-addition being one of the apparent molecular pathogeneses caused by pathogenic point mutations in human mitochondrial tRNA genes.


Assuntos
DNA Mitocondrial/genética , Mutação , RNA de Transferência de Isoleucina/genética , Humanos , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/genética , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência de Isoleucina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA