Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(37): e2120079119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067316

RESUMO

The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.


Assuntos
Córtex Cerebral , Proteínas do Tecido Nervoso , Neurônios , Proteína Reelina , Animais , Movimento Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Neurônios GABAérgicos/enzimologia , Hipocampo/embriologia , Hipocampo/enzimologia , Interneurônios/enzimologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/enzimologia , Proteína Reelina/genética , Proteína Reelina/metabolismo
2.
Mol Cell Proteomics ; 21(11): 100422, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198386

RESUMO

Cellular biomolecular complexes including protein-protein, protein-RNA, and protein-DNA interactions regulate and execute most biological functions. In particular in brain, protein-protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell-cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte-neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.


Assuntos
Comunicação Celular , Proteoma , Biotinilação , Sinapses , Encéfalo
3.
J Proteome Res ; 22(7): 2377-2390, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37311105

RESUMO

Substance use disorders are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based quantitative proteomics, along with a data-independent acquisition analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveal cocaine and morphine differentially alter diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between the phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome. The proteomics data in this study are available via ProteomeXchange with identifier PXD042043.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Morfina/farmacologia , Morfina/metabolismo , Proteoma/genética , Proteoma/metabolismo , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia
4.
J Biol Chem ; 298(9): 102296, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872014

RESUMO

Cardiac muscle myosin regulatory light chain (RLC) is constitutively phosphorylated at ∼0.4 mol phosphate/mol RLC in normal hearts, and phosphorylation is maintained by balanced activities of dedicated cardiac muscle-specific myosin light chain kinase and myosin light chain phosphatase (MLCP). Previously, the identity of the cardiac-MLCP was biochemically shown to be similar to the smooth muscle MLCP, which is a well-characterized trimeric protein comprising the regulatory subunit (MYPT1), catalytic subunit PP1cß, and accessory subunit M20. In smooth muscles in vivo, MYPT1 and PP1cß co-stabilize each other and are both necessary for normal smooth muscle contractions. In the cardiac muscle, MYPT1 and MYPT2 are both expressed, but contributions to physiological regulation of cardiac myosin dephosphorylation are unclear. We hypothesized that the main catalytic subunit for cardiac-MLCP is PP1cß, and maintenance of RLC phosphorylation in vivo is dependent on regulation by striated muscle-specific MYPT2. Here, we used PP1cß conditional knockout mice to biochemically define cardiac-MLCP proteins and developed a cardiac myofibrillar phosphatase assay to measure the direct contribution of MYPT-regulated and MYPT-independent phosphatase activities toward phosphorylated cardiac myosin. We report that (1) PP1cß is the main isoform expressed in the cardiac myocyte, (2) cardiac muscle pathogenesis in PP1cß knockout animals involve upregulation of total PP1cα in myocytes and non-muscle cells, (3) the stability of cardiac MYPT1 and MYPT2 proteins in vivo is not dependent on the PP1cß expression, and (4) phosphorylated myofibrillar cardiac myosin is dephosphorylated by both myosin-targeted and soluble MYPT-independent PP1cß activities. These results contribute to our understanding of the cardiac-MLCP in vivo.


Assuntos
Miosinas Cardíacas , Fosfatase de Miosina-de-Cadeia-Leve , Proteína Fosfatase 1 , Animais , Miosinas Cardíacas/metabolismo , Camundongos , Camundongos Knockout , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfatos/metabolismo , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
5.
Mol Psychiatry ; 27(4): 2068-2079, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177825

RESUMO

Forebrain dopamine-sensitive (dopaminoceptive) neurons play a key role in movement, action selection, motivation, and working memory. Their activity is altered in Parkinson's disease, addiction, schizophrenia, and other conditions, and drugs that stimulate or antagonize dopamine receptors have major therapeutic applications. Yet, similarities and differences between the various neuronal populations sensitive to dopamine have not been systematically explored. To characterize them, we compared translating mRNAs in the dorsal striatum and nucleus accumbens neurons expressing D1 or D2 dopamine receptor and prefrontal cortex neurons expressing D1 receptor. We identified genome-wide cortico-striatal, striatal D1/D2 and dorso/ventral differences in the translating mRNA and isoform landscapes, which characterize dopaminoceptive neuronal populations. Expression patterns and network analyses identified novel transcription factors with presumptive roles in these differences. Prostaglandin E2 (PGE2) was a candidate upstream regulator in the dorsal striatum. We pharmacologically explored this hypothesis and showed that misoprostol, a PGE2 receptor agonist, decreased the excitability of D2 striatal projection neurons in slices, and diminished their activity in vivo during novel environment exploration. We found that misoprostol also modulates mouse behavior including by facilitating reversal learning. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns and regulation. It also reveals the unforeseen role of PGE2 in the striatum as a potential neuromodulator and an attractive therapeutic target.


Assuntos
Dinoprostona , Misoprostol , Animais , Corpo Estriado/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Éxons , Expressão Gênica , Camundongos , Misoprostol/metabolismo , Misoprostol/farmacologia , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo
6.
J Neurosci ; 41(14): 3040-3050, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827970

RESUMO

Protein phosphatases, by counteracting protein kinases, regulate the reversible phosphorylation of many substrates involved in synaptic plasticity, a cellular model for learning and memory. A prominent phosphatase regulating synaptic plasticity and neurologic disorders is the serine/threonine protein phosphatase 1 (PP1). PP1 has three isoforms (α, ß, and γ, encoded by three different genes), which are regulated by a vast number of interacting subunits that define their enzymatic substrate specificity. In this review, we discuss evidence showing that PP1 regulates synaptic transmission and plasticity, as well as presenting novel models of PP1 regulation suggested by recent experimental evidence. We also outline the required targeting of PP1 by neurabin and spinophilin to achieve substrate specificity at the synapse to regulate AMPAR and NMDAR function. We then highlight the role of inhibitor-2 in regulating PP1 function in plasticity, including its positive regulation of PP1 function in vivo in memory formation. We also discuss the distinct function of the three PP1 isoforms in synaptic plasticity and brain function, as well as briefly discuss the role of inhibitory phosphorylation of PP1, which has received recent emphasis in the regulation of PP1 activity in neurons.


Assuntos
Plasticidade Neuronal/fisiologia , Proteína Fosfatase 1/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Proteína Fosfatase 1/química , Estrutura Terciária de Proteína , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia
7.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185323

RESUMO

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Estudos de Coortes , Epilepsia/metabolismo , Feminino , Seguimentos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 116(52): 26230-26238, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31871209

RESUMO

Although mouse models of Alzheimer's disease (AD) have provided tremendous breakthroughs, the etiology of later onset AD remains unknown. In particular, tau pathology in the association cortex is poorly replicated in mouse models. Aging rhesus monkeys naturally develop cognitive deficits, amyloid plaques, and the same qualitative pattern and sequence of tau pathology as humans, with tangles in the oldest animals. Thus, aging rhesus monkeys can play a key role in AD research. For example, aging monkeys can help reveal how synapses in the prefrontal association cortex are uniquely regulated compared to the primary sensory cortex in ways that render them vulnerable to calcium dysregulation and tau phosphorylation, resulting in the selective localization of tau pathology observed in AD. The ability to assay early tau phosphorylation states and perform high-quality immunoelectron microscopy in monkeys is a great advantage, as one can capture early-stage degeneration as it naturally occurs in situ. Our immunoelectron microscopy studies show that phosphorylated tau can induce an "endosomal traffic jam" that drives amyloid precursor protein cleavage to amyloid-ß in endosomes. As amyloid-ß increases tau phosphorylation, this creates a vicious cycle where varied precipitating factors all lead to a similar phenotype. These data may help explain why circuits with aggressive tau pathology (e.g., entorhinal cortex) may degenerate prior to producing significant amyloid pathology. Aging monkeys therefore can play an important role in identifying and testing potential therapeutics to protect the association cortex, including preventive therapies that are challenging to test in humans.

9.
J Neurosci ; 40(14): 2808-2816, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32111696

RESUMO

Addictive drugs usurp the brain's intrinsic mechanism for reward, leading to compulsive and destructive behaviors. In the ventral tegmental area (VTA), the center of the brain's reward circuit, GABAergic neurons control the excitability of dopamine (DA) projection neurons and are the site of initial psychostimulant-dependent changes in signaling. Previous work established that cocaine/methamphetamine exposure increases protein phosphatase 2A (PP2A) activity, which dephosphorylates the GABABR2 subunit, promotes internalization of the GABAB receptor (GABABR) and leads to smaller GABABR-activated G-protein-gated inwardly rectifying potassium (GIRK) currents in VTA GABA neurons. How the actions of PP2A become selective for a particular signaling pathway is poorly understood. Here, we demonstrate that PP2A can associate directly with a short peptide sequence in the C terminal domain of the GABABR1 subunit, and that GABABRs and PP2A are in close proximity in rodent neurons (mouse/rat; mixed sexes). We show that this PP2A-GABABR interaction can be regulated by intracellular Ca2+ Finally, a peptide that potentially reduces recruitment of PP2A to GABABRs and thereby limits receptor dephosphorylation increases the magnitude of baclofen-induced GIRK currents. Thus, limiting PP2A-dependent dephosphorylation of GABABRs may be a useful strategy to increase receptor signaling for treating diseases.SIGNIFICANCE STATEMENT Dysregulation of GABAB receptors (GABABRs) underlies altered neurotransmission in many neurological disorders. Protein phosphatase 2A (PP2A) is involved in dephosphorylating and subsequent internalization of GABABRs in models of addiction and depression. Here, we provide new evidence that PP2A B55 regulatory subunit interacts directly with a small region of the C-terminal domain of the GABABR1 subunit, and that this interaction is sensitive to intracellular Ca2+ We demonstrate that a short peptide corresponding to the PP2A interaction site on GABABR1 competes for PP2A binding, enhances phosphorylation GABABR2 S783, and affects functional signaling through GIRK channels. Our study highlights how targeting PP2A dependent dephosphorylation of GABABRs may provide a specific strategy to modulate GABABR signaling in disease conditions.


Assuntos
Neurônios/metabolismo , Proteína Fosfatase 2/metabolismo , Receptores de GABA-B/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/metabolismo , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ratos , Transmissão Sináptica/fisiologia
10.
Alzheimers Dement ; 17(6): 920-932, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33829643

RESUMO

INTRODUCTION: The etiology of sporadic Alzheimer's disease (AD) requires non-genetically modified animal models. METHODS: The relationship of tau phosphorylation to calcium-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) dysregulation was analyzed in aging rhesus macaque dorsolateral prefrontal cortex (dlPFC) and rat primary cortical neurons using biochemistry and immuno-electron microscopy. The influence of calcium leak from ryanodine receptors (RyRs) on neuronal firing and cognitive performance was examined in aged macaques. RESULTS: Aged monkeys naturally develop hyperphosphorylated tau, including AD biomarkers (AT8 (pS202/pT205) and pT217) and early tau pathology markers (pS214 and pS356) that correlated with evidence of increased calcium leak (pS2808-RyR2). Calcium also regulated early tau phosphorylation in vitro. Age-related reductions in the calcium-binding protein, calbindin, and in phosphodiesterase PDE4D were seen within dlPFC pyramidal cell dendrites. Blocking RyRs with S107 improved neuronal firing and cognitive performance in aged macaques. DISCUSSION: Dysregulated calcium signaling confers risk for tau pathology and provides a potential therapeutic target.


Assuntos
Cálcio/metabolismo , Disfunção Cognitiva/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Macaca mulatta , Proteínas tau/metabolismo , Envelhecimento/patologia , Animais , Sinalização do Cálcio , Modelos Animais de Doenças , Humanos , Masculino , Neurônios/metabolismo , Fosforilação , Córtex Pré-Frontal/patologia , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina
11.
Alzheimers Dement ; 17(12): 1976-1987, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984181

RESUMO

INTRODUCTION: Biomarkers that reflect pathologic processes affecting neuronal function during preclinical and early stages of Alzheimer's disease (AD) are needed to aid drug development. METHODS: A targeted, stable isotope, quantitative mass spectrometry-based investigation of longitudinal changes in concentrations of previously identified candidate biomarkers was performed in cerebrospinal fluid (CSF) of Alzheimer's Disease Neuroimaging Initiative participants who were classified as cognitively normal (CN; n = 76) or with mild cognitive impairment (MCI; n = 111) at baseline. RESULTS: Of the candidate biomarkers, the CSF concentration of neuronal pentraxin 2 (NPTX2), a protein involved in synaptic function, exhibited rates of change that were significantly different between three comparison groups (i.e., CN vs. MCI participants; AD pathology positive vs. negative defined by phosphorylated tau181/amyloid beta1-42 ratio; and clinical progressors vs. non-progressors). The rate of change of NPTX2 also significantly correlated with declining cognition. DISCUSSION: CSF NPTX2 concentration is a strong prognostic biomarker candidate of accelerated cognitive decline with potential use as a therapeutic target.


Assuntos
Doença de Alzheimer , Biomarcadores/líquido cefalorraquidiano , Proteína C-Reativa/líquido cefalorraquidiano , Disfunção Cognitiva , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteômica , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/patologia , Humanos , Estudos Longitudinais , Espectrometria de Massas , Fosforilação , Proteínas tau/líquido cefalorraquidiano
12.
J Neuroinflammation ; 17(1): 8, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906973

RESUMO

BACKGROUND: Cognitive impairment in schizophrenia, aging, and Alzheimer's disease is associated with spine and synapse loss from the dorsolateral prefrontal cortex (dlPFC) layer III. Complement cascade signaling is critical in driving spine loss and disease pathogenesis. Complement signaling is initiated by C1q, which tags synapses for elimination. C1q is thought to be expressed predominately by microglia, but its expression in primate dlPFC has never been examined. The current study assayed C1q levels in aging primate dlPFC and rat medial PFC (mPFC) and used immunoelectron microscopy (immunoEM), immunoblotting, and co-immunoprecipitation (co-IP) to reveal the precise anatomical distribution and interactions of C1q. METHODS: Age-related changes in C1q levels in rhesus macaque dlPFC and rat mPFC were examined using immunoblotting. High-spatial resolution immunoEM was used to interrogate the subcellular localization of C1q in aged macaque layer III dlPFC and aged rat layer III mPFC. co-IP techniques quantified protein-protein interactions for C1q and proteins associated with excitatory and inhibitory synapses in macaque dlPFC. RESULTS: C1q levels were markedly increased in the aged macaque dlPFC. Ultrastructural localization found the expected C1q localization in glia, including those ensheathing synapses, but also revealed extensive localization within neurons. C1q was found near synapses, within terminals and in spines, but was also observed in dendrites, often near abnormal mitochondria. Similar analyses in aging rat mPFC corroborated the findings in rhesus macaques. C1q protein increasingly associated with PSD95 with age in macaque, consistent with its synaptic localization as evidenced by EM. CONCLUSIONS: These findings reveal novel, intra-neuronal distribution patterns for C1q in the aging primate cortex, including evidence of C1q in dendrites. They suggest that age-related changes in the dlPFC may increase C1q expression and synaptic tagging for glial phagocytosis, a possible mechanism for age-related degeneration.


Assuntos
Envelhecimento/metabolismo , Complemento C1q/análise , Complemento C1q/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/metabolismo , Animais , Macaca mulatta , Neurônios/ultraestrutura , Córtex Pré-Frontal/ultraestrutura , Ratos , Ratos Sprague-Dawley
13.
Bioinformatics ; 35(13): 2313-2314, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462190

RESUMO

SUMMARY: Large-scale, quantitative proteomics data are being generated at ever increasing rates by high-throughput, mass spectrometry technologies. However, due to the complexity of these large datasets as well as the increasing numbers of post-translational modifications (PTMs) that are being identified, developing effective methods for proteomic visualization has been challenging. ProteomicsBrowser was designed to meet this need for comprehensive data visualization. Using peptide information files exported from mass spectrometry search engines or quantitative tools as input, the peptide sequences are aligned to an internal protein database such as UniProtKB. Each identified peptide ion including those with PTMs is then visualized along the parent protein in the Browser. A unique property of ProteomicsBrowser is the ability to combine overlapping peptides in different ways to focus analysis of sequence coverage, charge state or PTMs. ProteomicsBrowser includes other useful functions, such as a data filtering tool and basic statistical analyses to qualify quantitative data. AVAILABILITY AND IMPLEMENTATION: ProteomicsBrowser is implemented in Java8 and is available at https://medicine.yale.edu/keck/nida/proteomicsbrowser.aspx and https://github.com/peng-gang/ProteomicsBrowser. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Visualização de Dados , Proteômica , Bases de Dados de Proteínas , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Software
14.
BMC Psychiatry ; 20(1): 481, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998701

RESUMO

BACKGROUND: Depression affects approximately 7.1% of the United States population every year and has an annual economic burden of over $210 billion dollars. Several recent studies have sought to investigate the pathophysiology of depression utilizing focused cerebrospinal fluid (CSF) and serum analysis. Inflammation and metabolic dysfunction have emerged as potential etiological factors from these studies. A dysregulation in the levels of inflammatory proteins such as IL-12, TNF, IL-6 and IFN-γ have been found to be significantly correlated with depression. METHODS: CSF samples were obtained from 15 patients, seven with major depressive disorder and eight age- and gender-matched non-psychiatric controls. CSF protein profiles were obtained using quantitative mass spectrometry. The data were analyzed by Progenesis QI proteomics software to identify significantly dysregulated proteins. The results were subjected to bioinformatics analysis using the Ingenuity Pathway Analysis suite to obtain unbiased mechanistic insight into biologically relevant interactions and pathways. RESULTS: Several dysregulated proteins were identified. Bioinformatics analysis indicated that the potential disorder/disease pathways include inflammatory response, metabolic disease and organismal injury. Molecular and cellular functions that were affected include cellular compromise, cell-to-cell signaling & interaction, cellular movement, protein synthesis, and cellular development. The major canonical pathway that was upregulated was acute phase response signaling. Endogenous upstream regulators that may influence dysregulation of proinflammatory molecules associated with depression are interleukin-6 (IL-6), signal transducer and activator of transcription 3 (STAT3), oncostatin M, PR domain zinc finger protein 1 (PRDM1), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A). CONCLUSIONS: The proteome profiling data in this report identifies several potential biological functions that may be involved in the pathophysiology of major depressive disorder. Future research into how the differential expression of these proteins is involved in the etiology and severity of depression will be important.


Assuntos
Transtorno Depressivo Maior , Proteoma , Perfilação da Expressão Gênica , Humanos , Espectrometria de Massas , Proteômica
15.
Proc Natl Acad Sci U S A ; 114(6): 1395-1400, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115704

RESUMO

Wiskott-Aldrich syndrome protein (WASP) family verprolin homologous protein 1 (WAVE1) regulates actin-related protein 2/3 (Arp2/3) complex-mediated actin polymerization. Our previous studies have found WAVE1 to be inhibited by Cdk5-mediated phosphorylation in brain and to play a role in the regulation of dendritic spine morphology. Here we report that mice in which WAVE1 was knocked out (KO) in neurons expressing the D1 dopamine receptor (D1-KO), but not mice where WAVE1 was knocked out in neurons expressing the D2 dopamine receptor (D2-KO), exhibited a significant decrease in place preference associated with cocaine. In contrast to wild-type (WT) and WAVE1 D2-KO mice, cocaine-induced sensitized locomotor behavior was not maintained in WAVE1 D1-KO mice. After chronic cocaine administration and following withdrawal, an acute cocaine challenge induced WAVE1 activation in striatum, which was assessed by dephosphorylation. The cocaine-induced WAVE1 dephosphorylation was attenuated by coadministration of either a D1 dopamine receptor or NMDA glutamate receptor antagonist. Upon an acute challenge of cocaine following chronic cocaine exposure and withdrawal, we also observed in WT, but not in WAVE1 D1-KO mice, a decrease in dendritic spine density and a decrease in the frequency of excitatory postsynaptic AMPA receptor currents in medium spiny projection neurons expressing the D1 dopamine receptor (D1-MSNs) in the nucleus accumbens. These results suggest that WAVE1 is involved selectively in D1-MSNs in cocaine-evoked neuronal activity-mediated feedback regulation of glutamatergic synapses.


Assuntos
Cocaína/farmacologia , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Comportamento Espacial/efeitos dos fármacos , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Inibidores da Captação de Dopamina/farmacologia , Fenômenos Eletrofisiológicos/genética , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Fosforilação/efeitos dos fármacos , Receptores de Dopamina D1/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
16.
J Biol Chem ; 293(28): 11179-11194, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29802198

RESUMO

Striatin-1, a subunit of the serine/threonine phosphatase PP2A, is preferentially expressed in neurons in the striatum. As a member of the striatin family of B subunits, striatin-1 is a core component together with PP2A of a multiprotein complex called STRIPAK, the striatin-interacting phosphatase and kinase complex. Little is known about the function of striatin-1 or the STRIPAK complex in the mammalian striatum. Here, we identify a selective role for striatin-1 in striatal neuron maturation. Using a small hairpin RNA (shRNA) knockdown approach in primary striatal neuronal cultures, we determined that reduced expression of striatin-1 results in increased dendritic complexity and an increased density of dendritic spines, classified as stubby spines. The dendritic phenotype was rescued by co-expression of a striatin-1 mutant construct insensitive to the knockdown shRNA but was not rescued by co-expression of PP2A- or Mob3-binding deficient striatin-1 constructs. Reduction of striatin-1 did not result in deficits in neuronal connectivity in this knockdown model, as we observed no abnormalities in synapse formation or in spontaneous excitatory postsynaptic currents. Thus, this study suggests that striatin-1 is a regulator of neuronal development in striatal neurons.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Proteína Fosfatase 2/metabolismo , Coluna Vertebral/citologia , Coluna Vertebral/metabolismo , Animais , Proteínas de Ligação a Calmodulina/genética , Células Cultivadas , Feminino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Neurônios/metabolismo , Proteína Fosfatase 2/genética , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley
17.
J Biol Chem ; 293(43): 16677-16686, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30185619

RESUMO

Contractile force development of smooth muscle is controlled by balanced kinase and phosphatase activities toward the myosin regulatory light chain (RLC). Numerous biochemical and pharmacological studies have investigated the specificity and regulatory activity of smooth muscle myosin light-chain phosphatase (MLCP) bound to myosin filaments and comprised of the regulatory myosin phosphatase target subunit 1 (MYPT1) and catalytic protein phosphatase 1cß (PP1cß) subunits. Recent physiological and biochemical evidence obtained with smooth muscle tissues from a conditional MYPT1 knockout suggests that a soluble, MYPT1-unbound form of PP1cß may additionally contribute to myosin RLC dephosphorylation and relaxation of smooth muscle. Using a combination of isoelectric focusing and isoform-specific immunoblotting, we found here that more than 90% of the total PP1c in mouse smooth muscles is the ß isoform. Moreover, conditional knockout of PP1cα or PP1cγ in adult smooth muscles did not result in an apparent phenotype in mice up to 6 months of age and did not affect smooth muscle contractions ex vivo In contrast, smooth muscle-specific conditional PP1cß knockout decreased contractile force development in bladder, ileal, and aortic tissues and reduced mouse survival. Bladder smooth muscle tissue from WT mice was selectively permeabilized to remove soluble PP1cß to measure contributions of total (α-toxin treatment) and myosin-bound (Triton X-100 treatment) phosphatase activities toward phosphorylated RLC in myofilaments. Triton X-100 reduced PP1cß content by 60% and the rate of RLC dephosphorylation by 2-fold. These results are consistent with the selective dephosphorylation of RLC by both MYPT1-bound and -unbound PP1cß forms in smooth muscle.


Assuntos
Músculo Liso/enzimologia , Proteína Fosfatase 1/metabolismo , Animais , Íleo/enzimologia , Íleo/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Músculo Liso/fisiologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/fisiologia , Fosforilação , Proteína Fosfatase 1/genética , Bexiga Urinária/enzimologia , Bexiga Urinária/fisiologia
18.
J Neurosci ; 37(10): 2709-2722, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28167675

RESUMO

ARPP-16 (cAMP-regulated phospho-protein of molecular weight 16 kDa) is one of several small acid-soluble proteins highly expressed in medium spiny neurons of striatum that are phosphorylated in response to dopamine acting via D1 receptor/protein kinase A (PKA) signaling. We show here that ARPP-16 is also phosphorylated in vitro and in vivo by microtubule-associated serine/threonine kinase 3 (MAST3 kinase), an enzyme of previously unknown function that is enriched in striatum. We find that ARPP-16 interacts directly with the scaffolding A subunit of the serine/threonine protein phosphatase, PP2A, and that phosphorylation of ARPP-16 at Ser46 by MAST3 kinase converts the protein into a selective inhibitor of B55α- and B56δ-containing heterotrimeric forms of PP2A. Ser46 of ARPP-16 is phosphorylated to a high basal stoichiometry in striatum, suggestive of basal inhibition of PP2A in striatal neurons. In support of this hypothesis, conditional knock-out of ARPP-16 in CaMKIIα::cre/floxed ARPP-16/19 mice results in dephosphorylation of a subset of PP2A substrates including phospho-Thr75-DARPP-32, phospho-T308-Akt, and phospho-T202/Y204-ERK. Conditional knock-out of ARPP-16/19 is associated with increased motivation measured on a progressive ratio schedule of food reinforcement, yet an attenuated locomotor response to acute cocaine. Our previous studies have shown that ARPP-16 is phosphorylated at Ser88 by PKA. Activation of PKA in striatal slices leads to phosphorylation of Ser88, and this is accompanied by marked dephosphorylation of Ser46. Together, these studies suggest that phospho-Ser46-ARPP-16 acts to basally control PP2A in striatal medium spiny neurons but that dopamine acting via PKA inactivates ARPP-16 leading to selective potentiation of PP2A signaling.SIGNIFICANCE STATEMENT We describe a novel mechanism of signal transduction enriched in medium spiny neurons of striatum that likely mediates effects of the neurotransmitter dopamine acting on these cells. We find that the protein ARPP-16, which is highly expressed in striatal medium spiny neurons, acts as a selective inhibitor of certain forms of the serine/threonine protein phosphatase, PP2A, when phosphorylated by the kinase, MAST3. Under basal conditions, ARPP-16 is phosphorylated by MAST3 to a very high stoichiometry. However, the actions of MAST3 are antagonized by dopamine and cAMP-regulated signaling leading to disinhibition of ARPP-16 and increased PP2A action.


Assuntos
Corpo Estriado/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
19.
J Proteome Res ; 17(10): 3431-3444, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30125121

RESUMO

Cellular control of gene expression is a complex process that is subject to multiple levels of regulation, but ultimately it is the protein produced that determines the biosynthetic state of the cell. One way that a cell can regulate the protein output from each gene is by expressing alternate isoforms with distinct amino acid sequences. These isoforms may exhibit differences in localization and binding interactions that can have profound functional implications. High-throughput liquid chromatography tandem mass spectrometry proteomics (LC-MS/MS) relies on enzymatic digestion and has lower coverage and sensitivity than transcriptomic profiling methods such as RNA-seq. Digestion results in predictable fragmentation of a protein, which can limit the generation of peptides capable of distinguishing between isoforms. Here we exploit transcript-level expression from RNA-seq to set prior likelihoods and enable protein isoform abundances to be directly estimated from LC-MS/MS, an approach derived from the principle that most genes appear to be expressed as a single dominant isoform in a given cell type or tissue. Through this deep integration of RNA-seq and LC-MS/MS data from the same sample, we show that a principal isoform can be identified in >80% of gene products in homogeneous HEK293 cell culture and >70% of proteins detected in complex human brain tissue. We demonstrate that the incorporation of translatome data from ribosome profiling further refines this process. Defining isoforms in experiments with matched RNA-seq/translatome and proteomic data increases the functional relevance of such data sets and will further broaden our understanding of multilevel control of gene expression.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteoma/metabolismo , Proteômica/métodos , Algoritmos , Processamento Alternativo , Cromatografia Líquida/métodos , Células HEK293 , Humanos , Biossíntese de Proteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/genética , Reprodutibilidade dos Testes , Ribossomos/genética , Ribossomos/metabolismo , Espectrometria de Massas em Tandem/métodos
20.
J Biol Chem ; 292(32): 13133-13142, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28615442

RESUMO

Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gßγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gß1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gß1 revealed that Gß1 interacts with the PP1c α, ß, and γ1 isoforms. Purified PP1c bound to recombinant Gß1-GST protein, and PP1c co-immunoprecipitated with Gß1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gß1 complex, which correlated with an association of PP1c with phospholipase C ß3 (PLCß3), along with a concomitant dephosphorylation of the inhibitory Ser1105 residue in PLCß3. siRNA-mediated depletion of GNB1 (encoding Gß1) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα-/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gßγ. Finally, disruption of PP1c-Gß1 complexes with myristoylated Gß1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gß1 protein enlists PP1c to modulate GPCR signaling in platelets.


Assuntos
Plaquetas/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Megacariócitos/metabolismo , Modelos Moleculares , Fosfolipase C beta/metabolismo , Proteína Fosfatase 1/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Animais , Plaquetas/enzimologia , Células da Medula Óssea/citologia , Células da Medula Óssea/enzimologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Cruzamentos Genéticos , Feminino , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Masculino , Megacariócitos/citologia , Megacariócitos/enzimologia , Camundongos Knockout , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Fosfolipase C beta/química , Fosfolipase C beta/genética , Agregação Plaquetária , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA