Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(30): 10998-1005, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23672307

RESUMO

Besides conventional approaches for regulating in-coming molecules for gas storage, separation, or molecular sensing, the control of molecular release from the pores is a prerequisite for extending the range of their application, such as drug delivery. Herein, we report the fabrication of a new porous coordination polymer (PCP)-based composite consisting of a gold nanorod (GNR) used as an optical switch and PCP crystals for controlled molecular release using light irradiation as an external trigger. The delicate core-shell structures of this new platform, composed of an individual GNR core and an aluminum-based PCP shell, were achieved by the selective deposition of an aluminum precursor onto the surface of GNR followed by the replication of the precursor into aluminum-based PCPs. The mesoscopic structure was characterized by electron microscopy, energy dispersive X-ray elemental mapping, and sorption experiments. Combination at the nanoscale of the high storage capacity of PCPs with the photothermal properties of GNRs resulted in the implementation of unique motion-induced molecular release, triggered by the highly efficient conversion of optical energy into heat that occurs when the GNRs are irradiated into their plasmon band. Temporal control of the molecular release was demonstrated with anthracene as a guest molecule and fluorescent probe by means of fluorescence spectroscopy.


Assuntos
Ouro/química , Luz , Nanocompostos/química , Nanotubos/química , Processos Fotoquímicos , Polímeros/química , Materiais Biocompatíveis/química , Nanofibras/química , Piperidonas/química , Porosidade
2.
J Am Chem Soc ; 133(31): 11932-5, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21732690

RESUMO

A new strategy to synthesize monodispersed porous coordination polymer (PCP) nanocrystals at room temperature was developed and utilized for the formation of PCP thin films on gold substrates with fine control over the crystal sizes using the coordination modulation method. Hybridization of these PCP thin films with an environment-controlled quartz crystal microbalance system allowed determining the adsorption properties for organic vapors (methanol and hexane). In the case of high sensitivity (at the low-concentration dosing of analytes), the sensor response depended on the crystal size but not on the type of analyte. In contrast, at the high-concentration dosing, a clear dependence of the sorption kinetics on the analyte was observed due to significant sorbate-sorbate interaction.


Assuntos
Polímeros/química , Quartzo , Adsorção , Ouro/química , Cinética , Tamanho da Partícula , Porosidade , Propriedades de Superfície
3.
J Mater Chem B ; 3(20): 4205-4212, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262297

RESUMO

We investigated the encapsulation of bioactive molecules such as l-glutamic acid (Glu) into a series of porous coordination polymers (PCPs) based on aluminum hydroxy dicarboxylates [Al(OH)(L)]n (L = dicarboxylate ligand) and the molecular release therefrom. The use of 2,6-naphthalene dicarboxylate (2,6-ndc), 1,4-benzene dicarboxylate (1,4-bdc) and 1,4-naphthalene dicarboxylate (1,4-ndc) as ligands allows us to systematically tune the pore size and the flexibility of frameworks while keeping the same topology and thus to investigate the effect of those parameters upon both adsorption and release of Glu. We revealed the impact of zwitterionic nature of Glu upon loading efficiency; optimal loading pH was shown to be that for which Glu bears both positive and negative charges. Whereas the loading capacity of PCPs is governed by the pore size ([Al(OH)(2,6-ndc)]n > [Al(OH)(1,4-bdc)]n > [Al(OH)(1,4-ndc)]n), the adsorption isotherm clearly revealed that small or flexible pores induce the stronger Glu-PCP interaction. The release experiments of Glu from PCPs in a physiological media (pH = 7.4, 37 °C) demonstrated the exceptional stabilization of Glu within [Al(OH)(1,4-bdc)]n, compared to those within the other frameworks; whereas the rigid frameworks of [Al(OH)(2,6-ndc)]n and [Al(OH)(1,4-ndc)]n spontaneously released almost the entire Glu contents within 10 h, 70% of Glu loaded within [Al(OH)(1,4-bdc)]n still remained therein over 24 h. Interestingly, the burst release of Glu was triggered by increasing temperature up to 80 °C, at which the framework changed its structure from a closed phase to the open phase.

4.
Nat Commun ; 2: 168, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21266971

RESUMO

Chemosensors detect a single target molecule from among several molecules, but cannot differentiate targets from one another. In this study, we report a molecular decoding strategy in which a single host domain accommodates a class of molecules and distinguishes between them with a corresponding readout. We synthesized the decoding host by embedding naphthalenediimide into the scaffold of an entangled porous framework that exhibited structural dynamics due to the dislocation of two chemically non-interconnected frameworks. An intense turn-on emission was observed on incorporation of a class of aromatic compounds, and the resulting luminescent colour was dependent on the chemical substituent of the aromatic guest. This unprecedented chemoresponsive, multicolour luminescence originates from an enhanced naphthalenediimide-aromatic guest interaction because of the induced-fit structural transformation of the entangled framework. We demonstrate that the cooperative structural transition in mesoscopic crystal domains results in a nonlinear sensor response to the guest concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA