Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Immunol ; 12: 35, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21645356

RESUMO

BACKGROUND: Dendritic cells (DCs) are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. Interestingly, microenvironment conditions such as those present in tumor settings might induce a DC phenotype that is poorly immunogenic and with the capability of promoting angiogenesis. We hypothesize that this plasticity may be caused not only by the action of specific cytokines or growth factors but also by the properties of the surfaces with which they interact, such as extracellular matrix (ECM) components. RESULTS: Herewith we studied the effect of different surfaces and soluble factors on the biology of DCs. To accomplish this, we cultured murine myeloid(m) DCs on surfaces coated with fibronectin, collagen I, gelatin, and Matrigel using poly-D-lysine and polystyrene as non-biological surfaces. Further, we cultured these cells in the presence of regular DC medium (RPMI 10% FBS) or commercially available endothelial medium (EGM-2). We determined that mDCs could be kept in culture up to 3 weeks in these conditions, but only in the presence of GM-CSF. We were able to determine that long-term DC cultures produce an array of angiogenic factors, and that some of these cultures still retain the capability to induce T cell responses. CONCLUSIONS: Altogether these data indicate that in order to design DC-based vaccines or treatments focused on changing the phenotype of DCs associated with diseases such as cancer or atherosclerosis, it becomes necessary to fully investigate the microenvironment in which these cells are present or will be delivered.


Assuntos
Células Dendríticas/fisiologia , Células Mieloides/fisiologia , Proteínas Angiogênicas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Colágeno , Colágeno Tipo I/farmacologia , Células Dendríticas/efeitos dos fármacos , Combinação de Medicamentos , Feminino , Fibronectinas/farmacologia , Gelatina/farmacologia , Laminina , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Polilisina , Poliestirenos , Proteoglicanas , Linfócitos T/imunologia
2.
Oncotarget ; 9(94): 36666-36683, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30613350

RESUMO

Inflammation and cancer are inter-related, and both pro- and anti-tumorigenic effects are possible in different contexts, highlighting the importance of characterizing specific inflammatory pathways in distinct tumor types. Malignant cells and non-cancerous cells such as fibroblasts, infiltrating leukocytes (i.e., dendritic cells [DC], macrophages, or lymphocytes) and endothelial cells, in combination with the extracellular matrix, constitute the tumor microenvironment (TME). In the last decades, the role of the TME in cancer progression has gained increased attention and efforts directed at abrogating its deleterious effects on anti-cancer therapies have been ongoing. In this context, we investigated the potential of mouse and human ovarian cancer cells to produce inflammatory factors in response to pathogen recognition receptor (PRR) signaling, which might help to shape the biology of the TME. We determined that mouse ovarian tumors generate chemokines that are able to interact with receptors harbored by tumor-associated DCs. We also found that dsRNA triggers significant pro-inflammatory cytokine up-regulation in both human and mouse ovarian tumor cell lines, and that several PRR can simultaneously contribute to the stimulated inflammatory response displayed by these cells. Thus, dsRNA-activated PRRs may not only constitute potentially relevant drug targets for therapies aiming to prevent inflammation associated with leukocyte recruitment, or as co-adjuvants of therapeutic treatments, but also might have a role in development of nascent tumors, for example via activation of cancer cells by microbial molecules associated to pathogens, or with those appearing in circulation due to dysbiosis.

3.
Immunobiology ; 223(6-7): 466-476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29331323

RESUMO

Malignant cells are not the only components of a tumor mass since other cells (e.g., fibroblasts, infiltrating leukocytes and endothelial cells) are also part of it. In combination with the extracellular matrix, all these cells constitute the tumor microenvironment. In the last decade the role of the tumor microenvironment in cancer progression has gained increased attention and prompted efforts directed to abrogate its deleterious effects on anti-cancer therapies. The immune system can detect and attack tumor cells, and tumor-infiltrating lymphocytes (particularly CD8 T cells) have been associated with improved survival or better response to therapies in colorectal, melanoma, breast, prostate and ovarian cancer patients among others. Contrariwise, tumor-associated myeloid cells (myeloid-derived suppressor cells [MDSCs], dendritic cells [DCs], macrophages) or lymphoid cells such as regulatory T cells can stimulate tumor growth via inhibition of immune responses against the tumor or by participating in tumor neoangiogenesis. Herewith we analyzed the chemokine profile of mouse breast tumors regarding their capacity to generate factors capable of attracting and sequestering DCs to their midst. Chemoattractants from tumors were investigated by molecular biology and immunological techniques and tumor infiltrating DCs were investigated for matched chemokine receptors. In addition, we investigated the inflammatory response of breast cancer cells, a major component of the tumor microenvironment, to double-stranded RNA stimulation. By using molecular biology techniques such as qualitative and quantitative PCR, PCR arrays, and immunological techniques (ELISA, cytokine immunoarrays) we examined the effects of dsRNA treatment on the cytokine secretion profiles of mouse and human breast cancer cells and non-transformed cells. We were able to determine that tumors generate chemokines that are able to interact with receptors present on the surface of tumor infiltrating DCs. We observed that PRR signaling is able to modify the production of chemokines by breast tumor cells and normal breast cells, thereby constituting a possible player in shaping the profile of the leukocyte population in the TME.


Assuntos
Neoplasias da Mama/imunologia , Quimiocinas/metabolismo , Inflamação/imunologia , Animais , Movimento Celular , Quimiocinas/genética , DNA/imunologia , Feminino , Humanos , Mediadores da Inflamação/imunologia , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Receptores de Reconhecimento de Padrão/metabolismo
4.
ISRN Oncol ; 2012: 642141, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22530148

RESUMO

Ovarian cancer (OC) is an aggressive disease that affects approximately 1 in 70 women and has a poor prognosis (<50%, 5-year survival rate), in part because it is often diagnosed at a late stage. There are three main types of OC: neoplasms of surface epithelial, germ cell, or stromal origin, with surface epithelial tumors comprising about 80% of all OCs. In addition to improving diagnostics, it is necessary to develop more effective treatments for epithelial-origin OC. Here, we describe the paradoxical roles of toll-like receptor (TLR) signaling in the progression of cancer and discuss how its modulation may result in decreased tumor growth and metastasis via the attenuation of proangiogenic cytokines and potentiation of proapoptotic factors. In particular, it has been found that TLR activity can behave like a "double-edged sword", as its signaling pathways have been implicated as having both tumor-suppressive and tumor-promoting effects. With particular emphasis on OC, we discuss the need to consider the signaling details of TLRs and associated proteins in the multiple cell types present in the tumor milieu to achieve safe and effective design of TLR-based cancer therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA