Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Biol Chem ; 298(12): 102622, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272642

RESUMO

Fibrosis, stiffening and scarring of an organ/tissue due to genetic abnormalities, environmental factors, infection, and/or injury, is responsible for > 40% of all deaths in the industrialized world, and to date, there is no cure for it despite extensive research and numerous clinical trials. Several biomarkers have been identified, but no effective therapeutic targets are available. Human galectin-3 is a chimeric gene product formed by the fusion of the internal domain of the collagen alpha gene [N-terminal domain (ND)] at the 5'-end of galectin-1 [C-terminal domain (CRD)] that appeared during evolution together with vertebrates. Due to the overlapping structural similarities between collagen and galectin-3 and their shared susceptibility to cleavage by matrix metalloproteases to generate circulating collagen-like peptides, this review will discuss present knowledge on the role of collagen and galectin-3 as biomarkers of fibrosis. We will also highlight the need for transformative approaches targeting both the ND and CRD domains of galectin-3, since glycoconjugate binding by the CRD is triggered by ND-mediated oligomerization and the therapies targeted only at the CRD have so far achieved limited success.


Assuntos
Colágeno , Fibrose , Galectina 3 , Animais , Humanos , Biomarcadores , Colágeno/genética , Colágeno/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Vertebrados , Glicoconjugados , Metaloproteinases da Matriz
2.
Am J Pathol ; 191(2): 368-384, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181138

RESUMO

Canonical Wnt signaling is critical for melanocyte lineage commitment and melanoma development. RAD6B, a ubiquitin-conjugating enzyme critical for translesion DNA synthesis, potentiates ß-catenin stability/activity by inducing proteasome-insensitive polyubiquitination. RAD6B expression is induced by ß-catenin, triggering a positive feedback loop between the two proteins. RAD6B function in melanoma development/progression was investigated by targeting RAD6B using CrispR/Cas9 or an RAD6-selective small-molecule inhibitor #9 (SMI#9). SMI#9 treatment inhibited melanoma cell proliferation but not normal melanocytes. RAD6B knockout or inhibition in metastatic melanoma cells downregulated ß-catenin, ß-catenin-regulated microphthalmia-associated transcription factor (MITF), sex-determining region Y-box 10, vimentin proteins, and MITF-regulated melan A. RAD6B knockout or inhibition decreased migration/invasion, tumor growth, and lung metastasis. RNA-sequencing and stem cell pathway real-time RT-PCR analysis revealed profound reductions in WNT1 expressions in RAD6B knockout M14 cells compared with control. Expression levels of ß-catenin-regulated genes VIM, MITF-M, melan A, and TYRP1 (a tyrosinase family member critical for melanin biosynthesis) were reduced in RAD6B knockout cells. Pathway analysis identified gene networks regulating stem cell pluripotency, Wnt signaling, melanocyte development, pigmentation signaling, and protein ubiquitination, besides DNA damage response signaling, as being impacted by RAD6B gene disruption. These data reveal an important and early role for RAD6B in melanoma development besides its bonafide translesion DNA synthesis function, and suggest that targeting RAD6B may provide a novel strategy to treat melanomas with dysregulated canonical Wnt signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Melanoma/metabolismo , Melanoma/patologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Linhagem Celular , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Fenótipo
3.
Biochem Biophys Res Commun ; 522(1): 95-99, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31740005

RESUMO

Advanced colon cancer is extremely difficult to cure, underscoring the need to develop novel therapeutic agents. Prenylated curcumins that are semisynthetic curcumin derivatives with significant anti-cancer potential have been studied herein to assess their therapeutic potential for colon cancer and tested to this aim in vitro for their growth inhibitory properties against 5-fluorouracil + oxaliplatin resistant human colon cancer CR-HT29 and HCT-116 cells. The resulting most active product, gercumin (mono-O-geranylcurcumin), has been further tested for its synergistic effects with FOLFOX (a combination of 5-fluorouracil and oxaliplatin) on the same cell lines. Activity of this combination on colonosphere formation was also investigated. Gercumin was able to suppress the growth of cancer cells with a potency similar to that of curcumin. A synergistic effect of this compound and FOLFOX was also observed. doses tested for synergy in the colonosphere assays did not show greater suppression of colonosphere formation than independent treatment with either reagent alone. Only one of the combinations was shown to be more effective at suppressing colonosphere formation [gercumin 5  µM + FOLFOX (2x)]. Thus, the growth inhibitory effects of curcumin against human cancer cells can be modulated and enhanced by the introduction of hydrophobic chains, normally found in several natural compounds, like the geranyl one. Such compounds are also able to synergize with known chemotherapeutics.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Curcumina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Oxaliplatina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Células HCT116 , Células HT29 , Humanos , Compostos Organoplatínicos/farmacologia
4.
J Biol Chem ; 292(25): 10347-10363, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28490629

RESUMO

Platinum drug-induced cross-link repair requires the concerted activities of translesion synthesis (TLS), Fanconi anemia (FA), and homologous recombination repair pathways. The E2 ubiquitin-conjugating enzyme RAD6 is essential for TLS. Here, we show that RAD6 plays a universal role in platinum-based drug tolerance. Using a novel RAD6-selective small-molecule inhibitor (SMI#9) targeting the RAD6 catalytic site, we demonstrate that SMI#9 potentiates the sensitivities of cancer cells with innate or acquired cisplatin or oxaliplatin resistance. 5-Iododeoxyuridine/5-chlorodeoxyuridine pulse-labeling experiments showed that RAD6 is necessary for overcoming cisplatin-induced replication fork stalling, as replication-restart was impaired in both SMI#9-pretreated and RAD6B-silenced cells. Consistent with the role of RAD6/TLS in late-S phase, SMI#9-induced DNA replication inhibition occurred preferentially in mid/late-S phase. The compromised DNA repair and chemosensitization induced by SMI#9 or RAD6B depletion were associated with decreased platinum drug-induced proliferating cell nuclear antigen (PCNA) and FANCD2 monoubiquitinations (surrogate markers of TLS and FA pathway activation, respectively) and with attenuated FANCD2, RAD6, γH2AX, and POL η foci formation and cisplatin-adduct removal. SMI#9 pretreatment synergistically increased cisplatin inhibition of MDA-MB-231 triple-negative breast cancer cell proliferation and tumor growth. Using an isogenic HCT116 colon cancer model of oxaliplatin resistance, we further show that γH2AX and monoubiquitinated PCNA and FANCD2 are constitutively up-regulated in oxaliplatin-resistant HCT116 (HCT116-OxR) cells and that γH2AX, PCNA, and FANCD2 monoubiquitinations are induced by oxaliplatin in parental HCT116 cells. SMI#9 pretreatment sensitized HCT116-OxR cells to oxaliplatin. These data deepen insights into the vital role of RAD6/TLS in platinum drug tolerance and reveal clinical benefits of targeting RAD6 with SMI#9 for managing chemoresistant cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Reparo do DNA/efeitos dos fármacos , DNA de Neoplasias/biossíntese , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Compostos Organoplatínicos/farmacologia , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oxaliplatina , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Glycobiology ; 28(4): 172-181, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315388

RESUMO

Over the last few decades galectin-3, a carbohydrate binding protein, with affinity for N-acetyllactosamine residues, has been unique due to the regulatory roles it performs in processes associated with tumor progression and metastasis such as cell proliferation, homotypic/heterotypic aggregation, dynamic cellular transformation, migration and invasion, survival and apoptosis. Structure-function association of galectin-3 reveals that it consists of a short amino terminal motif, which regulates its nuclear-cytoplasmic shuttling; a collagen α-like domain, susceptible to cleavage by matrix metalloproteases and prostate specific antigen; accountable for its oligomerization and lattice formation, and a carbohydrate-recognition/binding domain containing the anti-death motif of the Bcl2 protein family. This structural complexity permits galectin-3 to associate with numerous molecules utilizing protein-protein and/or protein-carbohydrate interactions in the extra-cellular as well as intracellular milieu and regulate diverse signaling pathways, a number of which appear directed towards epithelial-mesenchymal transition and cancer stemness. Self-renewal, differentiation, long-term culturing and drug-resistance potential characterize cancer stem cells (CSCs), a small cell subpopulation within the tumor that is thought to be accountable for heterogeneity, recurrence and metastasis of tumors. Despite the fact that association of galectin-3 to the tumor stemness phenomenon is still in its infancy, there is sufficient direct evidence of its regulatory roles in CSC-associated phenotypes and signaling pathways. In this review, we have highlighted the available data on galectin-3 regulated functions pertinent to cancer stemness and explored the opportunities of its exploitation as a CSC marker and a therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Galectina 3/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Proteínas Sanguíneas , Galectina 3/antagonistas & inibidores , Galectinas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos
6.
Cancer Metastasis Rev ; 36(3): 547-555, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28752247

RESUMO

Generation of intratumoral phenotypic and genetic heterogeneity has been attributed to clonal evolution and cancer stem cells that together give rise to a tumor with complex ecosystems. Each ecosystem contains various tumor cell subpopulations and stromal entities, which, depending upon their composition, can influence survival, therapy responses, and global growth of the tumor. Despite recent advances in breast cancer management, the disease has not been completely eradicated as tumors recur despite initial response to treatment. In this review, using data from clinically relevant breast cancer models, we show that the fates of tumor stem cells/progenitor cells in the individual tumor ecosystems comprising a tumor are predetermined to follow a limited (unipotent) and/or unlimited (multipotent) path of differentiation which create conditions for active generation and maintenance of heterogeneity. The resultant dynamic systems respond differently to treatments, thus disrupting the delicate stability maintained in the heterogeneous tumor. This raises the question whether it is better then to preserve stability by preventing takeover by otherwise dormant ecosystems in the tumor following therapy. The ultimate strategy for personalized therapy would require serial assessments of the patient's tumor for biomarker validation during the entire course of treatment that is combined with their three-dimensional mapping to the tumor architecture and landscape.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Células-Tronco Neoplásicas/patologia , Animais , Feminino , Xenoenxertos , Humanos
7.
Mol Cancer ; 16(1): 155, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28964256

RESUMO

BACKGROUND: Although both long and micro RNAs are emerging as important functional components in colorectal cancer (CRC) progression and metastasis, the mechanism of their interaction remains poorly understood. CCAT2 (Colon cancer-associated transcript-2), a long noncoding RNA (lncRNA), has been reported to be over-expressed in CRC and is found to promote tumor growth. miRNAs, a class of naturally occurring short RNAs negatively control the expression of target genes by cleaving mRNA or through translation repression. Recently, we reported that miR-145 and miR-21 cooperate to regulate colon cancer stem cell (CSC) proliferation and differentiation. Considering that CCAT2 is mainly located in the nucleus and miRNA maturation process begins in the nucleus, we hypothesize that CCAT2 selectively blocks miR-145 maturation process, resulting in decreased mature miR-145 affecting colon CSC proliferation and differentiation. METHODS: The levels of CCAT2 were manipulated by transfection of CCAT2 expression plasmid or knockdown by siRNA or by CRISPR/Cas9. Quantitative RT-PCR was performed to examine the expression of CCAT2 and pri-, pre- and mature miR-145/21. Fluorescence in situ hybridization (FISH) was used to visualize CCAT2 in the cells. In vitro processing of pri-miRNA-145 was performed using T7 RNA polymerase and recombinant human Dicer. RESULTS: We have observed that modulated expression of CCAT2 regulates the expression of miR-145 in colon cancer HCT-116 and HT-29 cells. Knockout of CCAT2 increases miR-145 and negatively regulates miR-21 in HCT-116 cells, impairs proliferation and differentiation. In contrast, stable up-regulation of CCAT2 decreases mature miR-145 and increases the expression of several CSC markers in colon cancer cells. We have also observed that CCAT2 is enriched in the nucleus and correlates with the expression of pre-miR-145 but not pre-miR-21 in HCT-116 cells. These results indicate CCAT2 selectively blocks miR-145 maturation by inhibiting pre-miR-145 export to cytoplasm. Further, we revealed that CCAT2 blocks cleavage of pre-miR-145 by Dicer in vitro. CONCLUSIONS: Our results identify CCAT2 as a negative regulator of miRNA-145 biogenesis, and expose a novel mechanism of lncRNA-miRNA crosstalk.


Assuntos
Neoplasias do Colo/genética , Epistasia Genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Progressão da Doença , Humanos
8.
Semin Cancer Biol ; 27: 30-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24657939

RESUMO

Galectin-3, a member of ß-galactoside-binding gene family is a multi-functional protein, which regulates pleiotropic biological functions such as cell growth, cell adhesion, cell-cell interactions, apoptosis, angiogenesis and mRNA processing. Its unique structure enables it to interact with a plethora of ligands in a carbohydrate dependent or independent manner. Galectin-3 is mainly a cytosolic protein, but can easily traverse the intracellular and plasma membranes to translocate into the nucleus, mitochondria or get externalized. Depending on the cell type, specific experimental conditions in vitro, cancer type and stage, galectin-3 has been reported to be exclusively cytoplasmic, predominantly nuclear or distributed between the two compartments. In this review we have summarized the dynamics of galectin-3 shuttling between the nucleus and the cytoplasm, the nuclear transport mechanisms of galectin-3, how its specific interactions with the members of ß-catenin signaling pathways affect tumor progression, and its implications as a therapeutic target.


Assuntos
Galectina 3/metabolismo , Neoplasias/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Galectina 3/antagonistas & inibidores , Galectina 3/química , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Carcinogenesis ; 36 Suppl 1: S128-59, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106135

RESUMO

The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.


Assuntos
Carcinógenos Ambientais/efeitos adversos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Animais , Progressão da Doença , Exposição Ambiental/efeitos adversos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos
10.
Mol Cancer ; 14: 98, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25928322

RESUMO

BACKGROUND: Acquired drug resistance is one of the major reasons for failing cancer therapies. Although the reasons are not fully understood, they may be related to the presence of cancer stem cells (CSCs). We have reported that chemo-resistant (CR) colon cancer cells, highly enriched in CSCs, exhibit a marked up-regulation of miR-21 and that down-regulation of this miR renders the CR cells more susceptible to therapeutic regimens. However, the underlying molecular mechanism is poorly understood. The aim of this investigation is to unravel this mechanism. METHODS: The levels of miR-145 and miR-21 were manipulated by transfection of mature, antago-miRs or pCMV/miR-145 expression plasmid. Quantitative RT-PCR or/and Western blots were performed to examine the expression of CD44, ß-catenin, Sox-2, PDCD4, CK-20 and k-Ras. Colonosphere formation and SCID mice xenograft studies were performed to evaluate the tumorigenic properties of CSC-enriched colon CR cells. RESULTS: We investigated the role that microRNAs (miRs), specifically miR-21 and miR-145 play in regulating colon CSCs. We found the expression of miR-21 to be greatly increased and miR-145 decreased in CR colon cancer cells that are highly enriched in CSC, indicating a role for these miRNAs in regulating CSCs. In support of this, we found that whereas forced expression of miR-145 in colon cancer cells greatly inhibits CSCs and tumor growth, up-regulation of miR-21 causes an opposite phenomenon. In addition, administration of mature miR-145 or antagomir-21 (anti-sense miR-21) greatly suppresses the growth of colon cancer cell xenografts in SCID mice. This was associated with decreased expression of CD44, ß-catenin, Sox-2 and induction of CK-20 indicating that administration of miR-145 or antagomir-21 decreases CSC proliferation and induces differentiation. In vitro studies further demonstrate that miR-21 negatively regulates miR-145 and vice versa. k-Ras appears to play critical role in regulation of this process, as evidenced by the fact that the absence of k-Ras in CR colon cancer cells increases miR-145 expression, suppresses miR-21, and interrupts the negative cooperation between miR-21 and miR-145. CONCLUSIONS: Our current observations suggest that miR-21, miR-145, and their networks play critical roles in regulating CSCs growth and/or differentiation in the colon cancer and progression of chemo-resistance.


Assuntos
Neoplasias do Colo/genética , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Proliferação de Células , Neoplasias do Colo/patologia , Regulação para Baixo , Retroalimentação Fisiológica , Células HCT116 , Células HT29 , Humanos , Camundongos SCID , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Molecules ; 20(4): 7059-96, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25903363

RESUMO

Multivalent protein-carbohydrate interactions that are mediated by sugar-binding proteins, i.e., lectins, have been implicated in a myriad of intercellular recognition processes associated with tumor progression such as galectin-mediated cancer cellular migration/metastatic processes. Here, using a modified ELISA, we show that glycodendrimers bearing mixtures of galactosides, lactosides, and N-acetylgalactosaminosides, galectin-3 ligands, multivalently affect galectin-3 functions. We further demonstrate that lactose functionalized glycodendrimers multivalently bind a different member of the galectin family, i.e., galectin-1. In a modified ELISA, galectin-3 recruitment by glycodendrimers was shown to directly depend on the ratio of low to high affinity ligands on the dendrimers, with lactose-functionalized dendrimers having the highest activity and also binding well to galectin-1. The results depicted here indicate that synthetic multivalent systems and upfront assay formats will improve the understanding of the multivalent function of galectins during multivalent protein carbohydrate recognition/interaction.


Assuntos
Galectina 1/metabolismo , Galectina 3/metabolismo , Glicosídeos/metabolismo , Sítios de Ligação , Dendrímeros/química , Dendrímeros/metabolismo , Ensaio de Imunoadsorção Enzimática , Galectina 1/química , Galectina 3/química , Glicosídeos/química , Humanos , Ligação Proteica
12.
Glycobiology ; 24(10): 886-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25138305

RESUMO

Galectin-3 is a member of the family of ß-galactoside-binding lectins characterized by evolutionarily conserved sequences defined by structural similarities in their carbohydrate-recognition domains. Galectin-3 is a unique, chimeric protein consisting of three distinct structural motifs: (i) a short NH2 terminal domain containing a serine phosphorylation site; (ii) a repetitive proline-rich collagen-α-like sequence cleavable by matrix metalloproteases; and (iii) a globular COOH-terminal domain containing a carbohydrate-binding motif and an NWGR anti-death motif. It is ubiquitously expressed and has diverse biological functions depending on its subcellular localization. Galectin-3 is mainly found in the cytoplasm, also seen in the nucleus and can be secreted by non-classical, secretory pathways. In general, secreted galectin-3 mediates cell migration, cell adhesion and cell-cell interactions through the binding with high affinity to galactose-containing glycoproteins on the cell surface. Cytoplasmic galectin-3 exhibits anti-apoptotic activity and regulates several signal transduction pathways, whereas nuclear galectin-3 has been associated with pre-mRNA splicing and gene expression. Its unique chimeric structure enables it to interact with a plethora of ligands and modulate diverse functions such as cell growth, adhesion, migration, invasion, angiogenesis, immune function, apoptosis and endocytosis emphasizing its significance in the process of tumor progression. In this review, we have focused on the role of galectin-3 in tumor metastasis with special emphasis on angiogenesis.


Assuntos
Carcinogênese/genética , Galectina 3/genética , Neoplasias/genética , Neovascularização Patológica/genética , Apoptose/genética , Proteínas Sanguíneas , Adesão Celular , Galectina 3/química , Galectina 3/metabolismo , Galectinas , Humanos , Metástase Neoplásica , Neoplasias/patologia , Precursores de RNA/genética , Splicing de RNA/genética , Transdução de Sinais
13.
Chembiochem ; 15(14): 2106-12, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25138772

RESUMO

By using lactose-functionalized poly(amidoamine) dendrimers as a tunable multivalent platform, we studied cancer cell aggregation in three different cell lines (A549, DU-145, and HT-1080) with galectin-3. We found that small lactose-functionalized G(2)-dendrimer 1 inhibited galectin-3-induced aggregation of the cancer cells. In contrast, dendrimer 4 (a larger, generation 6 dendrimer with 100 carbohydrate end groups) caused cancer cells to aggregate through a galectin-3 pathway. This study indicates that inhibition of cellular aggregation occurred because 1 provided competitive binding sites for galectin-3 (compared to its putative cancer cell ligand, TF-antigen on MUC1). Dendrimer 4, in contrast, provided an excess of ligands for galectin-3 binding; this caused crosslinking and aggregation of cells to be increased.


Assuntos
Dendrímeros/metabolismo , Galectina 3/metabolismo , Lactose/metabolismo , Mucina-1/metabolismo , Neoplasias/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Linhagem Celular Tumoral , Dendrímeros/química , Humanos , Lactose/análogos & derivados , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas
14.
Beilstein J Org Chem ; 10: 1570-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161713

RESUMO

Galectin-3 meditates cell surface glycoprotein clustering, cross linking, and lattice formation. In cancer biology, galectin-3 has been reported to play a role in aggregation processes that lead to tumor embolization and survival. Here, we show that lactose-functionalized dendrimers interact with galectin-3 in a multivalent fashion to form aggregates. The glycodendrimer-galectin aggregates were characterized by dynamic light scattering and fluorescence microscopy methodologies and were found to be discrete particles that increased in size as the dendrimer generation was increased. These results show that nucleated aggregation of galectin-3 can be regulated by the nucleating polymer and provide insights that improve the general understanding of the binding and function of sugar-binding proteins.

15.
J Biol Chem ; 287(8): 5192-8, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22232548

RESUMO

Galectin-3 is a chimeric carbohydrate-binding protein, which interacts with cell surface carbohydrate-containing molecules and extracellular matrix glycoproteins and has been implicated in various biological processes such as cell growth, angiogenesis, motility, and metastasis. It is expressed in a wide range of tumor cells and is associated with tumor progression. The functions of galectin-3 are dependent on its localization and post-translational modifications such as cleavage and phosphorylation. Recently, we showed that galectin-3 Tyr-107 is phosphorylated by c-Abl; concomitantly, it was also shown that galectin-3 can be cleaved at this site by prostate-specific antigen (PSA), a chymotrypsin-like serine protease, after Tyr-107, resulting in loss of galectin-3 multivalency while preserving its carbohydrate binding activity. Galectin-3 is largely a monomer in solution but may form a homodimer by self-association through its carbohydrate recognition domain, whereas, in the presence of a ligand, galectin-3 polymerizes up to pentamers utilizing its N-terminal domain. Oligomerization is a unique feature of secreted galectin-3, which allows its function by forming ordered galectin-glycan structures, i.e. lattices, on the cell surface or through direct engagement of specific cell surface glycoconjugates by traditional ligand-receptor binding. We questioned whether Tyr-107 phosphorylation by c-Abl affects galectin-3 cleavage by PSA. The data suggest a role for galectin-3 in prostate cells associated with increased activity of c-Abl kinase and loss of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) activity. In addition, the ratio of phosphorylated/dephosphorylated galectin-3 might be used as a complementary value to that of PSA for prognosis of prostate cancer and a novel therapeutic target for the treatment of prostate cancer.


Assuntos
Galectina 3/química , Galectina 3/metabolismo , Antígeno Prostático Específico/metabolismo , Proteólise , Tirosina/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Espaço Extracelular/metabolismo , Humanos , Modelos Moleculares , Neovascularização Patológica/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Conformação Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo
16.
Oncotarget ; 13: 534-550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309869

RESUMO

The accepted notion of dNTP transport following cytoplasmic biosynthesis is 'facilitated diffusion'; however, whether this alone is sufficient for moving dNTPs for DNA synthesis remains an open question. The data presented here show that the MYH9 gene encoded heavy chain of non-muscle myosin IIA binds dNTPs potentially serving as a 'reservoir'. Pull-down assays showed that MYH9 present in the cytoplasmic, mitochondrial and nuclear compartments bind to DNA and this interaction is inhibited by dNTPs and 2-deoxyribose-5-phosphate (dRP) suggesting that MYH9-DNA binding is mediated via pentose sugar recognition. Direct dNTP-MYH9 binding was demonstrated by ELISA and a novel PCR-based method, which showed that all dNTPs bind to MYH9 with varying efficiencies. Cellular thermal shift assays showed that MYH9 thermal stability is enhanced by dNTPs. MYH9 siRNA transfection or treatment with myosin II selective inhibitors ML7 or blebbistatin decreased cell proliferation compared to controls. EdU labeling and cell cycle analysis by flow cytometry confirmed MYH9 siRNA and myosin II inhibitors decreased progression to S-phase with accumulation of cells in G0/G1 phase. Taken together, our data suggest a novel role for MYH9 in dNTP binding and DNA synthesis.


Assuntos
Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA , Proteínas do Citoesqueleto , DNA/genética , Desoxirribose , Humanos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Pentoses , Fosfatos , RNA Interferente Pequeno , Açúcares
17.
Biochim Biophys Acta ; 1803(10): 1198-205, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20600357

RESUMO

Galectin-3, a beta-galactoside-binding lectin, is found in cellular and extracellular location of the cell and has pleiotropic biological functions such as cell growth, cell adhesion and cell-cell interaction. It may exhibit anti- or pro-apoptotic activity depending on its localization and post-translational modifications. Two important post-translational modifications of galectin-3 have been reported: its cleavage and phosphorylation. Cleavage of galectin-3 was reported to be involved with angiogenic potential and apoptotic resistance. Phosphorylation of galectin-3 regulates its sugar-binding ability. In this report we have identified novel tyrosine phosphorylation sites in galectin-3 as well as the kinase responsible for its phosphorylation. Our results demonstrate that tyrosines at positions 79, 107 and 118 can be phosphorylated in vitro and in vivo by c-Abl kinase. Tyrosine 107 is the main target of c-Abl. Expression of galectin-3 Y107F mutant in galectin-3 null SK-Br-3 cells leads to morphological changes and increased motility compared to wild type galectin-3. Further investigation is needed to better understand the functional significance of the novel tyrosine phosphorylated sites of galectin-3.


Assuntos
Galectina 3/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-abl/metabolismo , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Galectina 3/genética , Humanos , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/genética , Especificidade por Substrato , Tirosina/genética , Tirosina/metabolismo
18.
Int J Cancer ; 127(11): 2530-41, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20162566

RESUMO

Galectin-3 cleavage is related to progression of human breast and prostate cancer and is partly responsible for tumor growth, angiogenesis and apoptosis resistance in mouse models. A functional polymorphism in galectin-3 gene, determining its susceptibility to cleavage by matrix metalloproteinases (MMPs)-2/-9 is related to racial disparity in breast cancer incidence in Asian and Caucasian women. The purpose of our study is to evaluate (i) if cleavage of galectin-3 could be related to angiogenesis during the progression of human breast cancer, (ii) the role of cleaved galectin-3 in induction of angiogenesis and (iii) determination of the galectin-3 domain responsible for induction of angiogenic response. Galectin-3 null breast cancer cells BT-459 were transfected with either cleavable full-length galectin-3 or its fragmented peptides. Chemotaxis, chemoinvasion, heterotypic aggregation, epithelial-endothelial cell interactions and angiogenesis were compared to noncleavable galectin-3. BT-549-H(64) cells harboring cleavable galectin-3 exhibited increased chemotaxis, invasion and interactions with endothelial cells resulting in angiogenesis and 3D morphogenesis compared to BT-549-P(64) cells harboring noncleavable galectin-3. BT-549-H(64) cells induced increased migration and phosphorylation of focal adhesion kinase in migrating endothelial cells. Endothelial cells cocultured with BT-549 cells transfected with galectin-3 peptides indicate that amino acids 1-62 and 33-250 stimulate migration and morphogenesis of endothelial cells. Immunohistochemical analysis of blood vessel density and galectin-3 cleavage in a breast cancer progression tissue array support the in vitro findings. We conclude that the cleavage of the N terminus of galectin-3 followed by its release in the tumor microenvironment in part leads to breast cancer angiogenesis and progression.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Galectina 3/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Substituição de Aminoácidos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Quimiotaxia/fisiologia , Técnicas de Cocultura , Células Endoteliais/patologia , Feminino , Galectina 3/genética , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Polimorfismo de Nucleotídeo Único , Transfecção
19.
Am J Pathol ; 174(4): 1515-23, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19286570

RESUMO

Galectin-3, a beta-galactoside-binding protein, has been implicated in a variety of biological functions including cell proliferation, apoptosis, angiogenesis, tumor progression, and metastasis. The present study was undertaken to understand the role of galectin-3 in the progression of prostate cancer. Immunohistochemical analysis of galectin-3 expression revealed that galectin-3 was cleaved during the progression of prostate cancer. Galectin-3 knockdown by small interfering RNA (siRNA) was associated with reduced cell migration, invasion, cell proliferation, anchorage-independent colony formation, and tumor growth in the prostates of nude mice. Galectin-3 knockdown in human prostate cancer PC3 cells led to cell-cycle arrest at G(1) phase, up-regulation of nuclear p21, and hypophosphorylation of the retinoblastoma tumor suppressor protein (pRb), with no effect on cyclin D1, cyclin E, cyclin-dependent kinases (CDK2 and CDK4), and p27 protein expression levels. The data obtained here implicate galectin-3 in prostate cancer progression and suggest that galectin-3 may serve as both a diagnostic marker and therapeutic target for future disease treatments.


Assuntos
Biomarcadores Tumorais/análise , Galectina 3/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Imunofluorescência , Galectina 3/genética , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(1): 165561, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639439

RESUMO

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with few therapy options besides chemotherapy. Although platinum-based drugs have shown initial activity in BRCA1-mutated TNBCs, chemoresistance remains a challenge. Here we show that RAD6B (UBE2B), a principal mediator of translesion synthesis (TLS), is overexpressed in BRCA1 wild-type and mutant TNBCs, and RAD6B overexpression correlates with poor survival. Pretreatment with a RAD6-selective inhibitor, SMI#9, enhanced cisplatin chemosensitivity of BRCA1 wild-type and mutant TNBCs. SMI#9 attenuated cisplatin-induced PCNA monoubiquitination (TLS marker), FANCD2 (Fanconi anemia (FA) activation marker), and TLS polymerase POL η. SMI#9-induced decreases in γH2AX levels were associated with concomitant inhibition of H2AX monoubiquitination, suggesting a key role for RAD6 in modulating cisplatin-induced γH2AX via H2AX monoubiquitination. Concordantly, SMI#9 inhibited γH2AX, POL η and FANCD2 foci formation. RAD51 foci formation was unaffected by SMI#9, however, its recruitment to double-strand breaks was inhibited. Using the DR-GFP-based assay, we showed that RAD6B silencing or SMI#9 treatment impairs homologous recombination (HR) in HR-proficient cells. DNA fiber assays confirmed that restart of cisplatin-stalled replicating forks is inhibited by SMI#9 in both BRCA1 wild-type and mutant TNBC cells. Consistent with the in vitro data, SMI#9 and cisplatin combination treatment inhibited BRCA1 wild-type and mutant TNBC growth as compared to controls. These RAD6B activities are unaffected by BRCA1 status of TNBCs suggesting that the RAD6B function in TLS/FA crosstalk could occur in HR-dependent and independent modes. Collectively, these data implicate RAD6 as an important therapeutic target for TNBCs irrespective of their BRCA1 status.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA1/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Anemia de Fanconi/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA