Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Cell ; 143(7): 1149-60, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21183077

RESUMO

Following pilus-mediated adhesion to human brain endothelial cells, meningococcus (N. meningitidis), the bacterium causing cerebrospinal meningitis, initiates signaling cascades, which eventually result in the opening of intercellular junctions, allowing meningeal colonization. The signaling receptor activated by the pathogen remained unknown. We report that N. meningitidis specifically stimulates a biased ß2-adrenoceptor/ß-arrestin signaling pathway in endothelial cells, which ultimately traps ß-arrestin-interacting partners, such as the Src tyrosine kinase and junctional proteins, under bacterial colonies. Cytoskeletal reorganization mediated by ß-arrestin-activated Src stabilizes bacterial adhesion to endothelial cells, whereas ß-arrestin-dependent delocalization of junctional proteins results in anatomical gaps used by bacteria to penetrate into tissues. Activation of ß-adrenoceptor endocytosis with specific agonists prevents signaling events downstream of N. meningitidis adhesion and inhibits bacterial crossing of the endothelial barrier. The identification of the mechanism used for hijacking host cell signaling machineries opens perspectives for treatment and prevention of meningococcal infection.


Assuntos
Arrestinas/metabolismo , Encéfalo/microbiologia , Células Endoteliais/microbiologia , Infecções Meningocócicas/metabolismo , Neisseria meningitidis/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Aderência Bacteriana , Barreira Hematoencefálica , Linhagem Celular , Humanos , Infecções Meningocócicas/microbiologia , beta-Arrestinas
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725157

RESUMO

Neisseria meningitidis utilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of N. meningitidis to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified. Here, we show that both PilE and PilV promote adhesion to endothelial vessels in vivo. The substantial adhesion defect observed for pilV mutants suggests it is the main adhesin. Consistent with this observation, superresolution microscopy showed the abundant distribution of PilV throughout the pilus. We determined the crystal structure of PilV and modeled it within the pilus filament. The small size of PilV causes it to be recessed relative to adjacent PilE subunits, which are dominated by a prominent hypervariable loop. Nonetheless, we identified a conserved surface-exposed adhesive loop on PilV by alanine scanning mutagenesis. Critically, antibodies directed against PilV inhibit N. meningitidis colonization of human skin grafts. These findings explain how N. meningitidis T4P undergo antigenic variation to evade the humoral immune response while maintaining their adhesive function and establish the potential of this highly conserved minor pilin as a vaccine and therapeutic target for the prevention and treatment of N. meningitidis infections.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Fímbrias Bacterianas/fisiologia , Neisseria meningitidis/fisiologia , Animais , Anticorpos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Humanos , Infecções Meningocócicas/tratamento farmacológico , Camundongos SCID
3.
PLoS Pathog ; 17(2): e1009299, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592056

RESUMO

Neisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels. This crucial step enables dissemination into tissues and promotes deregulated inflammation and coagulation, leading to extensive necrotic purpura in the most severe cases. Adhesion to blood vessels relies on type IV pili (TFP). These long filamentous structures are highly dynamic as they can rapidly elongate and retract by the antagonistic action of two ATPases, PilF and PilT. However, the consequences of TFP dynamics on the pathophysiology and the outcome of meningococcal sepsis in vivo have been poorly studied. Here, we show that human graft microvessels are replicative niches for meningococci, that seed the bloodstream and promote sustained bacteremia and lethality in a humanized mouse model. Intriguingly, although pilus-retraction deficient N. meningitidis strain (ΔpilT) efficiently colonizes human graft tissue, this mutant did not promote sustained bacteremia nor induce mouse lethality. This effect was not due to a decreased inflammatory response, nor defects in bacterial clearance by the innate immune system. Rather, TFP-retraction was necessary to promote the release of TFP-dependent contacts between bacteria and, in turn, the detachment from colonized microvessels. The resulting sustained bacteremia was directly correlated with lethality. Altogether, these results demonstrate that pilus retraction plays a key role in the occurrence and outcome of meningococcal sepsis by supporting sustained bacteremia. These findings open new perspectives on the role of circulating bacteria in the pathological alterations leading to lethal sepsis.


Assuntos
Bacteriemia/microbiologia , Modelos Animais de Doenças , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/patogenicidade , Sepse/microbiologia , Animais , Bacteriemia/metabolismo , Bacteriemia/patologia , Aderência Bacteriana , Células Endoteliais , Feminino , Proteínas de Fímbrias/genética , Humanos , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/patologia , Camundongos , Camundongos SCID , Sepse/metabolismo , Sepse/patologia , Transplante de Pele
4.
Proc Natl Acad Sci U S A ; 117(5): 2606-2612, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964828

RESUMO

Bacterial infections are frequently based on the binding of lectin-like adhesins to specific glycan determinants exposed on host cell receptors. These interactions confer species-specific recognition and tropism for particular host tissues and represent attractive antibacterial targets. However, the wide structural diversity of carbohydrates hampers the characterization of specific glycan determinants. Here, we characterized the receptor recognition of type IV pili (Tfp), a key adhesive factor present in numerous bacterial pathogens, using Neisseria meningitidis as a model organism. We found that meningococcal Tfp specifically recognize a triantennary sialylated poly-N-acetyllactosamine-containing N-glycan exposed on the human receptor CD147/Basigin, while fucosylated derivatives of this N-glycan impaired bacterial adhesion. Corroborating the inhibitory role of fucosylation on receptor recognition, adhesion of the meningococcus on nonhuman cells expressing human CD147 required prior defucosylation. These findings reveal the molecular basis of the selective receptor recognition by meningococcal Tfp and thereby, identify a potential antibacterial target.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Fímbrias/metabolismo , Infecções Meningocócicas/metabolismo , Neisseria meningitidis/metabolismo , Receptores de Superfície Celular/metabolismo , Adesinas Bacterianas/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Glicosilação , Humanos , Infecções Meningocócicas/genética , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Polissacarídeos/metabolismo , Receptores de Superfície Celular/genética
5.
J Infect Dis ; 226(7): 1276-1285, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35524969

RESUMO

BACKGROUND: Staphylococcus aureus dominates the lung microbiota of children with cystic fibrosis (CF) and persistent clones are able to establish chronic infection for years, having a direct deleterious impact on lung function. However, in this context, the exact contribution of S. aureus to the decline in respiratory function in children with CF is not elucidated. METHODS: To investigate the contribution of persistent S. aureus clones in CF disease, we undertook the analysis of sequential isogenic isolates recovered from 15 young CF patients. RESULTS: Using an air-liquid infection model, we observed a strong correlation between S. aureus adaption in the lung (late isolates), low toxicity, and proinflammatory cytokine secretion. Conversely, early isolates appeared to be highly cytotoxic but did not promote cytokine secretion. We found that cytokine secretion was dependent on staphylococcal protein A (Spa), which was selectively expressed in late compared to early isolates as a consequence of dysfunctional agr quorum-sensing system. Finally, we demonstrated the involvement of TNF-α receptor 1 signaling in the inflammatory response of airway epithelial cells to these lung-adapted S. aureus isolates. CONCLUSIONS: Our results suggest an unexpected direct role of bacterial lung adaptation in the progression of chronic lung disease by promoting a proinflammatory response through acquired agr dysfunction.


Assuntos
Fibrose Cística , Infecções Estafilocócicas , Criança , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Pulmão/metabolismo , Infecções Estafilocócicas/microbiologia , Proteína Estafilocócica A , Staphylococcus aureus/fisiologia , Fator de Necrose Tumoral alfa
6.
J Clin Microbiol ; 59(3)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33328176

RESUMO

Staphylococcus epidermidis is a pathogen emerging worldwide as a leading cause of health care-associated infections. A standardized high-resolution typing method to document transmission and dissemination of multidrug-resistant S. epidermidis strains is needed. Our aim was to provide a core genome multilocus sequence typing (cgMLST) scheme for S. epidermidis to improve the international surveillance of S. epidermidis We defined a cgMLST scheme based on 699 core genes and used it to investigate the population structure of the species and the genetic relatedness of isolates recovered from infants hospitalized in several wards of a French hospital. Our results show the long-lasting endemic persistence of S. epidermidis clones within and across wards of hospitals and demonstrate the ability of our cgMLST approach to identify and track these clones. We made the scheme publicly available through the Institut Pasteur BIGSdb server (http://bigsdb.pasteur.fr/epidermidis/). This tool should enable international harmonization of the epidemiological surveillance of multidrug-resistant S. epidermidis clones. By comparing gene distribution among infection and commensal isolates, we also confirmed the association of the mecA locus with infection isolates and of the fdh gene with commensal isolates. (This study has been registered at ClinicalTrials.gov under registration no. NCT03374371.).


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Células Clonais , Genoma Bacteriano/genética , Hospitais , Humanos , Tipagem de Sequências Multilocus , Infecções Estafilocócicas/epidemiologia , Staphylococcus epidermidis/genética
7.
Cell Microbiol ; 22(1): e13132, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31658405

RESUMO

The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.


Assuntos
Bactérias/patogenicidade , Barreira Hematoencefálica/microbiologia , Animais , Transporte Biológico , Encéfalo/microbiologia , Células Endoteliais/microbiologia , Humanos , Inflamação , Neisseria meningitidis/patogenicidade , Neisseria meningitidis/fisiologia , Streptococcus pneumoniae/patogenicidade , Streptococcus pneumoniae/fisiologia , Fatores de Virulência
8.
Cell Microbiol ; 22(4): e13185, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32185901

RESUMO

Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Interaction with both peripheral and cerebral microvascular endothelial cells is at the heart of meningococcal pathogenesis. During the last two decades, an essential role for meningococcal type IV pili in vascular colonisation and disease progression has been unravelled. This review summarises 20 years of research on meningococcal type IV pilus-dependent virulence mechanisms, up to the identification of promising anti-virulence compounds that target type IV pili.


Assuntos
Aderência Bacteriana , Fímbrias Bacterianas/classificação , Fímbrias Bacterianas/metabolismo , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/patogenicidade , Animais , Células Endoteliais/microbiologia , Humanos , Camundongos , Virulência
9.
PLoS Pathog ; 14(4): e1006981, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29630665

RESUMO

Purpura fulminans is a deadly complication of Neisseria meningitidis infections due to extensive thrombosis of microvessels. Although a Disseminated Intra-vascular Coagulation syndrome (DIC) is frequently observed during Gram negative sepsis, it is rarely associated with extensive thrombosis like those observed during meningococcemia, suggesting that the meningococcus induces a specific dysregulation of coagulation. Another specific feature of N. meningitidis pathogenesis is its ability to colonize microvessels endothelial cells via type IV pili. Importantly, endothelial cells are key in controlling the coagulation cascade through the activation of the potent anticoagulant Protein C (PC) thanks to two endothelial cell receptors among which the Endothelial Protein C Receptor (EPCR). Considering that congenital or acquired deficiencies of PC are associated with purpura fulminans, we hypothesized that a defect in the activation of PC following meningococcal adhesion to microvessels is responsible for the thrombotic events observed during meningococcemia. Here we showed that the adhesion of N. meningitidis on endothelial cells results in a rapid and intense decrease of EPCR expression by inducing its cleavage in a process know as shedding. Using siRNA experiments and CRISPR/Cas9 genome edition we identified ADAM10 (A Disintegrin And Metalloproteinase-10) as the protease responsible for this shedding. Surprisingly, ADAM17, the only EPCR sheddase described so far, was not involved in this process. Finally, we showed that this ADAM10-mediated shedding of EPCR induced by the meningococcal interaction with endothelial cells was responsible for an impaired activation of Protein C. This work unveils for the first time a direct link between meningococcal adhesion to endothelial cells and a severe dysregulation of coagulation, and potentially identifies new therapeutic targets for meningococcal purpura fulminans.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Endotélio Vascular/patologia , Proteínas de Membrana/metabolismo , Infecções Meningocócicas/complicações , Microvasos/patologia , Proteína C/metabolismo , Púrpura Fulminante/etiologia , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Aderência Bacteriana , Coagulação Sanguínea/fisiologia , Células Cultivadas , Receptor de Proteína C Endotelial/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/microbiologia , Humanos , Proteínas de Membrana/genética , Infecções Meningocócicas/microbiologia , Microvasos/metabolismo , Microvasos/microbiologia , Neisseria meningitidis/fisiologia , Proteína C/genética , Púrpura Fulminante/metabolismo , Púrpura Fulminante/patologia
10.
Cell Microbiol ; 21(11): e13063, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31167044

RESUMO

Neisseria meningitidis is a Gram-negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, N. meningitidis grow on the top of mucus-producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of N. meningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between N. meningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.


Assuntos
Infecções Meningocócicas/microbiologia , Nasofaringe/microbiologia , Neisseria meningitidis/patogenicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Vasos Sanguíneos/microbiologia , Células Endoteliais/patologia , Células Epiteliais/patologia , Interações entre Hospedeiro e Microrganismos , Humanos , Inovirus/crescimento & desenvolvimento , Inovirus/patogenicidade , Infecções Meningocócicas/sangue , Infecções Meningocócicas/líquido cefalorraquidiano , Neisseria meningitidis/metabolismo , Fatores de Virulência
11.
J Infect Dis ; 220(12): 1967-1976, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31420648

RESUMO

Staphylococcus aureus is a leading cause of both acute and chronic infections in humans. The importance of the pentose phosphate pathway (PPP) during S. aureus infection is currently largely unexplored. In the current study, we focused on one key PPP enzyme, transketolase (TKT). We showed that inactivation of the unique gene encoding TKT activity in S. aureus USA300 (∆tkt) led to drastic metabolomic changes. Using time-lapse video imaging and mice infection, we observed a major defect of the ∆tkt strain compared with wild-type strain in early intracellular proliferation and in the ability to colonize kidneys. Transcriptional activity of the 2 master regulators sigma B and RpiRc was drastically reduced in the ∆tkt mutant during host cells invasion. The concomitant increased RNAIII transcription suggests that TKT-or a functional PPP-strongly influences the ability of S. aureus to proliferate within host cells by modulating key transcriptional regulators.


Assuntos
Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Estresse Fisiológico , Transcetolase/metabolismo , Animais , Carbono/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Genes Bacterianos , Humanos , Rim/metabolismo , Rim/microbiologia , Metabolômica/métodos , Camundongos , Mutação , Fenótipo , Transdução de Sinais , Staphylococcus aureus/enzimologia , Estresse Fisiológico/genética , Transcetolase/genética
12.
Clin Infect Dis ; 69(11): 1937-1945, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30753350

RESUMO

BACKGROUND: Chronic lung infection in cystic fibrosis (CF) patients by Staphylococcus aureus is a well-established epidemiological fact. Indeed, S. aureus is the most commonly identified pathogen in the lungs of CF patients. Improving our understanding of the mechanisms associated with the persistence of S. aureus is therefore an important issue. METHODS: We selected pairs of sequential S. aureus isolates from 3 patients with CF and from 1 patient with non-CF chronic lung disease. We used a combination of genomic, proteomic, and metabolomic approaches with functional assays for in-depth characterization of S. aureus long-term persistence. RESULTS: In this study, we show that late S. aureus isolates from CF patients have an increased ability for intracellular survival in CF bronchial epithelial-F508del cells compared to ancestral early isolates. Importantly, the increased ability to persist intracellularly was confirmed for S. aureus isolates within the own-patient F508del epithelial cells. An increased ability to form biofilm was also demonstrated. Furthermore, we identified the underlying genetic modifications that induce altered protein expression profiles and notable metabolic changes. These modifications affect several metabolic pathways and virulence regulators that could constitute therapeutic targets. CONCLUSIONS: Our results strongly suggest that the intracellular environment might constitute an important niche of persistence and relapse necessitating adapted antibiotic treatments.


Assuntos
Staphylococcus aureus/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Cromatografia Líquida , Humanos , Proteogenômica/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem
13.
PLoS Pathog ; 13(7): e1006495, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704569

RESUMO

Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΦ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i) form bundles of filaments, and/or (ii) are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΦ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases.


Assuntos
Inovirus/fisiologia , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/patogenicidade , Neisseria meningitidis/virologia , Animais , Aderência Bacteriana , Células Epiteliais/microbiologia , Feminino , Fímbrias Bacterianas/fisiologia , Humanos , Camundongos , Camundongos SCID , Nasofaringe/microbiologia , Neisseria meningitidis/crescimento & desenvolvimento , Neisseria meningitidis/fisiologia , Prófagos/fisiologia , Virulência
14.
BMC Infect Dis ; 19(1): 302, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943907

RESUMO

BACKGROUND: Staphylococcus aureus has emerged as a leading cause of invasive severe diseases with a high rate of morbidity and mortality worldwide. The wide spectrum of clinical manifestations and outcome observed in staphylococcal illness may be a consequence of both microbial factors and variability of the host immune response. CASE PRESENTATION: A 14-years old child developed limb ischemia with gangrene following S. aureus bloodstream infection. Histopathology revealed medium-sized arterial vasculitis. The causing strain belonged to the emerging clone CC1-MSSA and numerous pathogenesis-related genes were identified. Patient's genotyping revealed functional variants associated with severe infections. A combination of virulence and host factors might explain this unique severe form of staphylococcal disease. CONCLUSION: A combination of virulence and genetic host factors might explain this unique severe form of staphylococcal disease.


Assuntos
Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus/genética , Vasculite/diagnóstico , Adolescente , Amputação Cirúrgica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Encéfalo/diagnóstico por imagem , Cefotaxima/farmacologia , Cefotaxima/uso terapêutico , Clindamicina/farmacologia , Clindamicina/uso terapêutico , Humanos , Perna (Membro)/cirurgia , Imageamento por Ressonância Magnética , Masculino , Meticilina/farmacologia , Choque Séptico/diagnóstico , Choque Séptico/tratamento farmacológico , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Vasculite/complicações , Vasculite/microbiologia
15.
BMC Biol ; 15(1): 75, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851366

RESUMO

BACKGROUND: Polymorphic toxins (PTs) are multi-domain bacterial exotoxins belonging to distinct families that share common features in terms of domain organization. PTs are found in all major bacterial clades, including many toxic effectors of type V and type VI secretion systems. PTs modulate the dynamics of microbial communities by killing or inhibiting the growth of bacterial competitors lacking protective immunity proteins. RESULTS: In this work, we identified a novel widespread family of PTs, named MuF toxins, which were exclusively encoded within temperate phages and their prophages. By analyzing the predicted proteomes of 1845 bacteriophages and 2464 bacterial genomes, we found that MuF-containing proteins were frequently part of the DNA packaging module of tailed phages. Interestingly, MuF toxins were abundant in the human gut microbiome. CONCLUSIONS: Our results uncovered the presence of the MuF toxin family in the temperate phages of Firmicutes. The MuF toxin family is likely to play an important role in the ecology of the human microbiota where pathogens and commensal species belonging to the Firmicutes are abundant. We propose that MuF toxins could be delivered by phages into host bacteria and either influence the lysogeny decision or serve as bacterial weapons by inhibiting the growth of competing bacteria.


Assuntos
Bactérias/genética , Toxinas Bacterianas/análise , Bacteriófagos/metabolismo , Exotoxinas/análise , Genoma Bacteriano , Bactérias/virologia , Microbioma Gastrointestinal , Humanos , Prófagos/metabolismo
16.
Clin Infect Dis ; 65(2): 282-291, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379372

RESUMO

BACKGROUND: Hidradenitis suppurativa (HS) is a frequent and severe disease of the skin, characterized by recurrent or chronic skinfold suppurative lesions with a high impact on quality of life. Although considered inflammatory, antimicrobial treatments can improve or lead to clinical remission of HS, suggesting triggering microbial factors. Indeed, mixed anaerobic microbiota are associated with a majority of HS lesions. Our aim in this study was to characterize the landscape of anaerobic infections in HS using high-throughput sequencing. METHODS: We sampled and cultured 149 lesions and 175 unaffected control skinfold areas from 65 adult HS patients. The microbiome of 80 anaerobic lesions was compared to that of 88 control samples by 454 high-throughput sequencing after construction of 16S ribosomal RNA gene libraries. RESULTS: Bacterial cultures detected anaerobes in 83% of lesions vs 53% of control samples, combined with milleri group streptococci and actinomycetes in 33% and 26% of cases, respectively. High-throughput sequencing identified 43 taxa associated with HS lesions. Two gram-negative anaerobic rod taxa, Prevotella and Porphyromonas, predominated, contrasting with a reduced abundance of aerobic commensals. These rare taxa of normal skinfold microbiota were associated with lesions independently of gender, duration and familial history of HS, body mass index, and location. Two main additional taxa, Fusobacterium and Parvimonas, correlated with the clinical severity of HS. CONCLUSIONS: In this study we reveal the high prevalence and particular landscape of mixed anaerobic infection in HS, paving the way for rationale targeted antimicrobial treatments.


Assuntos
Bactérias Anaeróbias/genética , Bactérias Gram-Negativas/genética , Hidradenite Supurativa/microbiologia , Metagenômica , Adulto , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/fisiologia , Feminino , Bactérias Gram-Negativas/isolamento & purificação , Hidradenite Supurativa/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Microbiota , Prevotella/isolamento & purificação , Estudos Prospectivos , Qualidade de Vida , Pele/microbiologia , Pele/patologia , Infecções dos Tecidos Moles/microbiologia
17.
J Clin Immunol ; 37(7): 727-731, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28856582

RESUMO

ᅟ: Helicobacter bilis is a commensal bacterium causing chronic hepatitis and colitis in mice. In humans, enterohepatic Helicobacter spp. are associated with chronic hepatobiliary diseases. PURPOSE: We aimed at understanding the microbial etiology in a patient with X-linked agammaglobulinemia presenting with suppurative cholangitis. METHODS: 16S rDNA PCR directly performed on a liver biopsy retrieved DNA of H. bilis. RESULTS: Clinical outcome resulted in the normalization of clinical and biological parameters under antibiotic treatment by a combination of ceftriaxone, metronidazole, and doxycyclin followed by a 2-week treatment with moxifloxacin and a 2-month treatment with azithromycin. CONCLUSION: In conclusion, these data suggest a specific clinical and microbiological approach in patients with humoral deficiency in order to detect H. bilis hepatobiliary diseases.


Assuntos
Agamaglobulinemia/microbiologia , Colangite/microbiologia , Doenças Genéticas Ligadas ao Cromossomo X/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter/genética , Agamaglobulinemia/tratamento farmacológico , Agamaglobulinemia/patologia , Antibacterianos/uso terapêutico , Colangite/tratamento farmacológico , Colangite/patologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/patologia , Humanos , Fígado/patologia , Masculino , Adulto Jovem
18.
PLoS Pathog ; 11(1): e1004592, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569427

RESUMO

The genus Neisseria includes both commensal and pathogenic species which are genetically closely related. However, only meningococcus and gonococcus are important human pathogens. Very few toxins are known to be secreted by pathogenic Neisseria species. Recently, toxins secreted via type V secretion system and belonging to the widespread family of contact-dependent inhibition (CDI) toxins have been described in numerous species including meningococcus. In this study, we analyzed loci containing the maf genes in N. meningitidis and N. gonorrhoeae and proposed a novel uniform nomenclature for maf genomic islands (MGIs). We demonstrated that mafB genes encode secreted polymorphic toxins and that genes immediately downstream of mafB encode a specific immunity protein (MafI). We focused on a MafB toxin found in meningococcal strain NEM8013 and characterized its EndoU ribonuclease activity. maf genes represent 2% of the genome of pathogenic Neisseria, and are virtually absent from non-pathogenic species, thus arguing for an important biological role. Indeed, we showed that overexpression of one of the four MafB toxins of strain NEM8013 provides an advantage in competition assays, suggesting a role of maf loci in niche adaptation.


Assuntos
Toxinas Bacterianas/genética , Neisseria/genética , Neisseria/patogenicidade , Sequência de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Ilhas Genômicas/genética , Humanos , Dados de Sequência Molecular , Família Multigênica , Neisseria/metabolismo , Organismos Geneticamente Modificados , Estrutura Terciária de Proteína , Via Secretória , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Infect Immun ; 84(10): 3017-23, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481255

RESUMO

Meningococcal septic shock is associated with profound vasoplegia, early and severe myocardial dysfunction, and extended skin necrosis responsible for a specific clinical entity designated purpura fulminans (PF). PF represents 90% of fatal meningococcal infections. One characteristic of meningococcal PF is the myocardial dysfunction that occurs in the early phase of sepsis. Furthermore, hemodynamic studies have shown that the prognosis of meningococcal sepsis is directly related to the degree of impairment of cardiac contractility during the initial phase of the disease. To gain insight into a potential interaction of Neisseria meningitidis with the myocardial microvasculature, we modified a previously described humanized mouse model by grafting human myocardial tissue to SCID mice. We then infected the grafted mice with N. meningitides Using the humanized SCID mouse model, we demonstrated that N. meningitidis targets the human myocardial tissue vasculature, leading to the formation of blood thrombi, infectious vasculitis, and vascular leakage. These results suggest a novel mechanism of myocardial injury in the course of severe N. meningitidis sepsis that is likely to participate in primary myocardial dysfunction.


Assuntos
Coração/microbiologia , Infecções Meningocócicas/microbiologia , Microvasos/microbiologia , Animais , Bacteriemia/microbiologia , Modelos Animais de Doenças , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Feminino , Humanos , Infecções Meningocócicas/patologia , Camundongos SCID , Miocárdio , Neisseria meningitidis , Choque Séptico/sangue , Vasculite/patologia , Trombose Venosa/patologia
20.
Microbiology (Reading) ; 162(2): 268-282, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26602366

RESUMO

The mechanism by which Neisseria meningitidis becomes invasive is not well understood. Comparative genomics identified the presence of an 8 kb island in strains belonging to invasive clonal complexes. This island was designated MDA for meningococcal disease associated. MDA is highly conserved among meningococcal isolates and its analysis revealed a genomic organization similar to that of a filamentous prophage such as CTXΦ of Vibrio cholerae. Subsequent molecular investigations showed that the MDA island has indeed the characteristics of a filamentous prophage, which can enter into a productive cycle and is secreted using the type IV pilus (tfp) secretin PilQ. At least three genes of the prophage are necessary for the formation of the replicative cytoplasmic form (orf1, orf2 and orf9). Immunolabelling of the phage with antibodies against the major capsid protein, ORF4, confirmed that filamentous particles, about 1200 nm long, covered with ORF4 are present at the bacterial surface forming bundles in some places and interacting with pili. The MDA bacteriophage is able to infect different N. meningitidis strains, using the type IV pili as a receptor via an interaction with the adsorption protein ORF6. Altogether, these data demonstrate that the MDA island encodes a functional prophage able to produce infectious filamentous phage particles.


Assuntos
Sítios de Ligação Microbiológicos/genética , Inovirus/genética , Neisseria meningitidis/genética , Neisseria meningitidis/virologia , Prófagos/genética , Receptores Virais/genética , Sequência de Bases , DNA Viral/genética , Fímbrias Bacterianas/virologia , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/patogenicidade , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA