Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Nature ; 578(7794): 290-295, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025034

RESUMO

Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.


Assuntos
Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mecanotransdução Celular , Glicoproteínas de Membrana/metabolismo , Estresse Mecânico , Animais , Aterosclerose/metabolismo , Feminino , Integrinas/metabolismo , Camundongos , Neuropilina-1/metabolismo , Maleabilidade , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Circulation ; 137(1): 57-70, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030345

RESUMO

BACKGROUND: Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS: To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS: Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca2+-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca2+-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum-mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS: Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Fosforilação , Coelhos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo
4.
Cardiovasc Res ; 118(6): 1535-1547, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132807

RESUMO

AIMS: Identifying novel mediators of lethal myocardial reperfusion injury that can be targeted during primary percutaneous coronary intervention (PPCI) is key to limiting the progression of patients with ST-elevation myocardial infarction (STEMI) to heart failure. Here, we show through parallel clinical and integrative preclinical studies the significance of the protease cathepsin-L on cardiac function during reperfusion injury. METHODS AND RESULTS: We found that direct cardiac release of cathepsin-L in STEMI patients (n = 76) immediately post-PPCI leads to elevated serum cathepsin-L levels and that serum levels of cathepsin-L in the first 24 h post-reperfusion are associated with reduced cardiac contractile function and increased infarct size. Preclinical studies demonstrate that inhibition of cathepsin-L release following reperfusion injury with CAA0225 reduces infarct size and improves cardiac contractile function by limiting abnormal cardiomyocyte calcium handling and apoptosis. CONCLUSION: Our findings suggest that cathepsin-L is a novel therapeutic target that could be exploited clinically to counteract the deleterious effects of acute reperfusion injury after an acute STEMI.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Catepsinas , Humanos , Infarto do Miocárdio/terapia , Reperfusão Miocárdica/efeitos adversos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Intervenção Coronária Percutânea/efeitos adversos , Reperfusão , Resultado do Tratamento
5.
Clin Obes ; 11(5): e12474, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34254445

RESUMO

Obesity is a risk factor for severe complications from coronavirus disease 2019 (COVID-19). During the COVID-19 pandemic in Spring 2020, many clinics and obesity centers across Europe were required to close. This study aimed to determine the impact of COVID-19 on the provision of obesity services across 10 European countries via a survey of physicians (n = 102) specializing in treating persons with obesity (PwO). In total, 62-95 out of 102 physicians reported that COVID-19 affected obesity-related services, with cancellations/suspensions ranging from 50% to 100% across the 10 countries. Approximately 75% of cancellations/suspensions were provider- rather than patient-initiated. A median increase of 20%-25% in waiting times was reported for most services across the countries. When services resume, 87 out of 100 physicians consider factors influencing down-stream patient outcomes as the most relevant factors for prioritizing interventional treatment. Responses showed that 65 out of 102 and 36 out of 102 physicians believed it (highly) likely that a change in treatment guidance will occur to prioritize earlier interventional treatment for the management of PwO, by either using bariatric surgery or pharmacotherapy, respectively. Results from this study provide important learnings, such as opportunities for, and discrepancies in, the provision of alternative care in light of services cancellations or delays, which may be important for the future management of obesity, especially during future waves of COVID-19 or other infectious pandemics.


Assuntos
COVID-19 , Pesquisas sobre Atenção à Saúde , Serviços de Saúde/estatística & dados numéricos , Obesidade/terapia , Médicos , COVID-19/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Pandemias , SARS-CoV-2 , Listas de Espera
6.
Eur J Pharmacol ; 842: 1-9, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30359564

RESUMO

In the isolated rat carotid artery, the endocannabinoid anandamide induces endothelium-dependent relaxation via activation of the enzyme sphingosine kinase (SK). This generates sphingosine-1-phosphate (S1P) which can be released from the cell and activates S1P receptors on the endothelium. In anaesthetised mice, anandamide has a well-characterised triphasic effect on blood pressure but the contribution of SK and S1P receptors in mediating changes in blood pressure has never been studied. Therefore, we assessed this in the current study. The peak hypotensive response to 1 and 10 mg/kg anandamide was measured in control C57BL/6 mice and in mice pretreated with selective inhibitors of SK1 (BML-258, also known as SK1-I) or SK2 ((R)-FTY720 methylether (ROMe), a dual SK1/2 inhibitor (SKi) or an S1P1 receptor antagonist (W146). Vasodilator responses to S1P were also studied in isolated mouse aortic rings. The hypotensive response to anandamide was significantly attenuated by BML-258 but not by ROMe. Antagonising S1P1 receptors with W146 completely blocked the fall in systolic but not diastolic blood pressure in response to anandamide. S1P induced vasodilation in denuded aortic rings was blocked by W146 but caused no vasodilation in endothelium-intact rings. This study provides evidence that the SK1/S1P regulatory-axis is necessary for the rapid hypotension induced by anandamide. Generation of S1P in response to anandamide likely activates S1P1 to reduce total peripheral resistance and lower mean arterial pressure. These findings have important implications in our understanding of the hypotensive and cardiovascular actions of cannabinoids.


Assuntos
Anti-Hipertensivos/farmacologia , Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Vasodilatação/efeitos dos fármacos
7.
J Am Coll Cardiol ; 68(24): 2652-2666, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27978950

RESUMO

BACKGROUND: Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin-angiotensin-aldosterone system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic mini-pump. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). OBJECTIVES: The authors evaluated effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post-infarction. METHODS: C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular pressure volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation/contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff-perfused whole-heart model. RESULTS: Gene delivery of Ang-(1-9) reduced sudden cardiac death post-MI. Pressure volume measurements revealed complete restoration of end-systolic pressure, ejection fraction, end-systolic volume, and the end-diastolic pressure volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A-dependent mechanism. CONCLUSIONS: Our novel findings showed that Ang-(1-9) gene therapy preserved left ventricular systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) directly affected cardiomyocyte calcium handling through a protein kinase A-dependent mechanism. These data emphasized Ang-(1-9) gene therapy as a potential new strategy in the context of MI.


Assuntos
Angiotensina I/uso terapêutico , Infarto do Miocárdio/terapia , Fragmentos de Peptídeos/uso terapêutico , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular , Animais , Células Cultivadas , Modelos Animais de Doenças , Terapia Genética , Ventrículos do Coração/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Volume Sistólico , Sístole
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA