Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172712, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677439

RESUMO

The phyllosphere microbiome of vegetable products constitutes an important reservoir for multidrug resistant bacteria and Antibiotic Resistance Genes (ARG). Vegetable products including fermented products such as Paocai therefore may serve as a shuttle for extrinsic microorganisms with ARGs into the gut of consumers. Here we study the effect of fermentation on Paocai ARG dissemination by metagenomic analysis. Microbial abundance and diversity of the Paocai microbiome were diminished during fermentation, which correlated with the reduction of abundance in ARGs. Specifically, as fermentation progressed, Enterobacterales overtook Pseudomonadales as the predominant ARG carriers, and Lactobacillales and Enterobacteriales became the determinants of Paocai resistome variation. Moreover, the dual effect of microbes and metal resistance genes (MRGs) was the major contributor driving Paocai resistome dynamics. We recovered several metagenome-assembled genomes (MAGs) carrying acquired ARGs in the phyllosphere microbiome. ARGs of potential clinical and epidemiological relevance such as tet M and emrB-qacA, were mainly hosted by non-dominant bacterial genera. Overall, our study provides evidence that changes in microbial community composition by fermentation aid in constraining ARG dispersal from raw ingredients to the human microbiome but does not eliminate them.


Assuntos
Fermentação , Microbiota , Microbiota/efeitos dos fármacos , Bactérias/genética , Genes Bacterianos , Metagenoma , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Verduras/microbiologia , Humanos , Dieta
2.
Chem Sci ; 15(5): 1894-1905, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303933

RESUMO

Tuning the electron distribution of metal single-atom active sites via bimetallic clusters is an effective way to enhance their hydrogen evolution reaction (HER) activity, but remains a great challenge. A biochar-based electrocatalyst (BCMoMn800-2) with both MnN4 active sites and Mo2C/Mn7C3 clusters was synthesized using in situ enriched Mo/Mn biomass as a precursor to trigger the HER. Various characterization and density functional theory (DFT) calculation results indicated that the presence of Mo2C/Mn7C3 clusters in BCMoMn800-2 effectively induced the redistribution of charges at MnN4 sites, reducing the energy of H* activation during the HER. In 0.5 M H2SO4, the overpotential was 27.4 mV at a current density of 10 mA cm-2 and the Tafel slope was 31 mV dec-1, and its electrocatalytic performance was close to that of Pt/C. The electrocatalyst also exhibited excellent electrocatalytic stability and durability. This work might provide a new strategy for solid waste recycling and constructing efficient HER electrocatalysts.

3.
Viruses ; 16(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066310

RESUMO

Rift Valley fever (RVF), a mosquito-borne transboundary zoonosis, was first confirmed in Rwanda's livestock in 2012 and since then sporadic cases have been reported almost every year. In 2018, the country experienced its first large outbreak, which was followed by a second one in 2022. To determine the circulating virus lineages and their ancestral origin, two genome sequences from the 2018 outbreak, and thirty-six, forty-one, and thirty-eight sequences of small (S), medium (M), and large (L) genome segments, respectively, from the 2022 outbreak were generated. All of the samples from the 2022 outbreak were collected from slaughterhouses. Both maximum likelihood and Bayesian-based phylogenetic analyses were performed. The findings showed that RVF viruses belonging to a single lineage, C, were circulating during the two outbreaks, and shared a recent common ancestor with RVF viruses isolated in Uganda between 2016 and 2019, and were also linked to the 2006/2007 largest East Africa RVF outbreak reported in Kenya, Tanzania, and Somalia. Alongside the wild-type viruses, genetic evidence of the RVFV Clone 13 vaccine strain was found in slaughterhouse animals, demonstrating a possible occupational risk of exposure with unknown outcome for people working in meat-related industry. These results provide additional evidence of the ongoing wide spread of RVFV lineage C in Africa and emphasize the need for an effective national and international One Health-based collaborative approach in responding to RVF emergencies.


Assuntos
Surtos de Doenças , Genoma Viral , Gado , Filogenia , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Ruanda/epidemiologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/virologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/classificação , Vírus da Febre do Vale do Rift/isolamento & purificação , Gado/virologia , Bovinos , Matadouros , Genômica/métodos
4.
Bioresour Bioprocess ; 8(1): 105, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650237

RESUMO

Levoglucosan is a promising sugar present in the lignocellulose pyrolysis bio-oil, which is a renewable and environment-friendly source for various value-added productions. Although many microbial catalysts have been engineered to produce biofuels and chemicals from levoglucosan, the demerits that these biocatalysts can only utilize pure levoglucosan while inhibited by the inhibitors co-existing with levoglucosan in the bio-oil have greatly limited the industrial-scale application of these biocatalysts in lignocellulose biorefinery. In this study, the previously engineered Escherichia coli LGE2 was evolved for enhanced inhibitor tolerance using long-term adaptive evolution under the stress of multiple inhibitors and finally, a stable mutant E. coli-H was obtained after ~ 374 generations' evolution. In the bio-oil media with an extremely acidic pH of 3.1, E. coli-H with high inhibitor tolerance exhibited remarkable levoglucosan consumption and ethanol production abilities comparable to the control, while the growth of the non-evolved strain was completely blocked even when the pH was adjusted to 7.0. Finally, 8.4 g/L ethanol was achieved by E. coli-H in the undetoxified bio-oil media with ~ 2.0% (w/v) levoglucosan, reaching 82% of the theoretical yield. Whole-genome re-sequencing to monitor the acquisition of mutations identified 4 new mutations within the globally regulatory genes rssB, yqhA, and basR, and the - 10 box of the putative promoter of yqhD-dgkA operon. Especially, yqhA was the first time to be revealed as a gene responsible for inhibitor tolerance. The mutations were all responsible for improved fitness, while basR mutation greatly contributed to the fitness improvement of E. coli-H. This study, for the first time, generated an inhibitor-tolerant levoglucosan-utilizing strain that could produce cost-effective bioethanol from the toxic bio-oil without detoxification process, and provided important experimental evidence and valuable genetic/proteinic information for the development of other robust microbial platforms involved in lignocellulose biorefining processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA