Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(2): 171, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854682

RESUMO

Notch signaling is a conserved signaling pathway that participates in many aspects of mammary gland development and homeostasis, and has extensively been associated with breast tumorigenesis. Here, to unravel the as yet debated role of Notch3 in breast cancer development, we investigated its expression in human breast cancer samples and effects of its loss in mice. Notch3 expression was very weak in breast cancer cells and was associated with good patient prognosis. Interestingly, its expression was very strong in stromal cells of these patients, though this had no prognostic value. Mechanistically, we demonstrated that Notch3 prevents tumor initiation via HeyL-mediated inhibition of Mybl2, an important regulator of cell cycle. In the mammary glands of Notch3-deficient mice, we observed accelerated tumor initiation and proliferation in a MMTV-Neu model. Notch3-null tumors were enriched in Mybl2 mRNA signature and protein expression. Hence, our study reinforces the anti-tumoral role of Notch3 in breast tumorigenesis.


Assuntos
Neoplasias da Mama , Transformação Celular Neoplásica , Animais , Feminino , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Divisão Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Homeostase , Receptor Notch3/genética , Proteínas Repressoras , Transativadores
2.
FEBS J ; 285(21): 3909-3924, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29776009

RESUMO

Transmembrane receptors are usually seen as on and off switches: when the specific ligand is bound, the receptor is on and transduces a downstream signal, whereas when the ligand is absent, the receptor is off. Over the last two decades several reports have argued for an alternative view where some receptors, depending on the context, will be active both in the presence and in the absence of ligand, being sort of onA and onB switch rather than on and off. These receptors have been named dependence receptors (DR) and they share the ability to actively trigger cell death when unbound by their respective ligands. DRs have been shown to be important guardians of tissue homeostasis. In pathological settings such as cancer, DRs are seen as tumour suppressors and a clinical trial is ongoing to assay whether these DRs can be used to provide clinical benefit by triggering cancer cell death. In this review we are reviewing this functional family of receptors and underlying their promising potential for targeted therapy against cancer.


Assuntos
Apoptose , Neoplasias/patologia , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Receptores de Superfície Celular/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
3.
J Natl Cancer Inst ; 106(11)2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25313246

RESUMO

BACKGROUND: The Sonic Hedgehog (SHH) signaling pathway plays an important role in neural crest cell fate during embryonic development and has been implicated in the progression of multiple cancers that include neuroblastoma, a neural crest cell-derived disease. While most of the SHH signaling is mediated by the well-described canonical pathway leading to the activation of Smoothened and Gli, it has recently been shown that cell-adhesion molecule-related/downregulated by oncogenes (CDON) serves as a receptor for SHH and contributes to SHH-induced signaling. CDON has also been recently described as a dependence receptor, triggering apoptosis in the absence of SHH. This CDON proapoptotic activity has been suggested to constrain tumor progression. METHODS: CDON expression was analyzed by quantitative-reverse transcription-polymerase chain reaction in a panel of 226 neuroblastoma patients and associated with stages, overall survival, and expression of miR181 family members using Kaplan Meier and Pearson correlation methods. Cell death assays were performed in neuroblastoma cell lines and tumor growth was investigated in the chick chorioallantoic model. All statistical tests were two-sided. RESULTS: CDON expression was inversely associated with neuroblastoma aggressiveness (P < .001). Moreover, re-expression of CDON in neuroblastoma cell lines was associated with apoptosis in vitro and tumor growth inhibition in vivo. We show that CDON expression is regulated by the miR181 miRNA family, whose expression is directly associated with neuroblastoma aggressiveness (survival: high miR181-b 73.2% vs low miR181-b 54.6%; P = .03). CONCLUSIONS: Together, these data support the view that CDON acts as a tumor suppressor in neuroblastomas, and that CDON is tightly regulated by miRNAs.


Assuntos
Apoptose , Moléculas de Adesão Celular/metabolismo , MicroRNAs/metabolismo , Neuroblastoma/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neuroblastoma/genética , Neuroblastoma/patologia , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA