Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Environ Manage ; 176: 11-20, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27031296

RESUMO

Cattle waste products high in nitrogen (N) that enter waterways via rainfall runoff can contribute to aquatic ecosystem health deterioration. It is well established that N leaching from this source can be reduced by plant assimilation, e.g. pasture grass. Additionally, N leaching can be reduced when there is sufficient carbon (C) in the soil such as plant litterfall to stimulate microbial processes, i.e. denitrification, which off-gas N from the soil profile. However, the relative importance of these two processes is not well understood. A soil microcosm experiment was conducted to determine the role of biotic processes, pasture grass and microbial activity, and abiotic processes such as soil sorption, in reducing N leaching loss, during successive additions of bovine urine. Pasture grass was the most effective soil cover in reducing N leaching losses, which leached 70% less N compared to exposed soil. Successive application of urine to the soil resulted in N accumulation, after which there was a breaking point indicated by high N leaching losses. This is likely to be due to the low C:N ratio within the soil profiles treated with urine (molar ratio 8:1) compared to water treated soils (30:1). In this experiment we examined the role of C addition in reducing N losses and showed that the addition of glucose can temporarily reduce N leaching. Overall, our results demonstrated that plant uptake of N was a more important process in preventing N leaching than microbial processes.


Assuntos
Nitrogênio/análise , Solo/química , Urina/química , Movimentos da Água , Poluentes da Água/análise , Água/química , Animais , Austrália , Carbono/análise , Bovinos , Fenômenos Químicos , Ecossistema , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Poaceae/química , Microbiologia do Solo , Poluentes do Solo/análise
2.
Sci Total Environ ; 749: 141482, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32827821

RESUMO

There is emerging evidence for the phytotoxicity of terrestrial dissolved organic matter (DOM), however its sources, transformations and ecological effects in aquatic ecosystems are poorly understood. DOM characterization by Nuclear Magnetic Resonance (NMR) spectroscopy has typically involved solid-state techniques, but poor resolution has often precluded identification of individual components. This study is the first to directly identify individual phytotoxic components using a novel combined approach of preparative HPLC fractionation of DOM (obtained from leaves of two common riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis). This was followed by chemical characterization of fractions, using one-dimensional (1D) and two-dimensional (2D) solution-state 1H NMR analyses. Additionally, the phytotoxic effect of the fractions was determined using cultures of the cyanobacteria Raphidiopsis (Cylindrospermopsis) raciborskii. The amino acid, proline, from Casuarina leachate was identified as phytotoxic, while for Eucalyptus leachate, it was gallic acid and polyphenols. These phytotoxicants remained in the leachates when they were incubated in sunlight or the dark conditions over 5 days. Our study identifies phytotoxic compounds with the potential to affect algal species composition, and potentially control nuisance R. raciborskii blooms.


Assuntos
Cianobactérias , Ecossistema , Espectroscopia de Ressonância Magnética , Luz Solar , Árvores
3.
Sci Total Environ ; 695: 133901, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31756858

RESUMO

Previous studies have shown that under laboratory conditions, dissolved organic matter (DOM) leached from plants can be differentially more phytotoxic to cyanobacteria, compared to green algae. This study examined how DOM source and transformation processes (microbial and photochemical) affect its chemical composition and phytotoxicity towards a cultured species of cyanobacteria (Raphidiopsis raciborskii) using a factorial experimental design. To complement cyanobacterial bioassays, the chemical composition and associated changes in DOM were determined using spectroscopic (nuclear magnetic resonance (NMR) and absorbance) and elemental analyses. Sunlight exposed DOM from leaves of the terrestrial plants, Casuarina cunninghamiana and Eucalyptus tereticornis had the most phytotoxic effect compared to DOM not exposed to sunlight. This phytotoxic DOM was characterised by relatively low nitrogen content, containing highly coloured and relatively high molecular mass constituents. Both mixed effect model and PCA approaches to predict inhibition of photosynthetic yield indicated phytotoxicity could be predicted (P < 0.001) based upon the following parameters: C: N ratio; gilvin, and lignin-derived phenol content of DOM. Parallel proton-detected 1D and 2D NMR techniques showed that glucose anomers were the major constituents of fresh leachate. With ageing, glucose anomers disappeared and products of microbial transformation appeared, but there was no indication of the appearance of additional phytotoxic compounds. This suggests that reactive oxygen species may be responsible, at least partially, for DOM phytotoxicity. This study provides important new information highlighting the characteristics of DOM that link with phytotoxic effects.


Assuntos
Cianobactérias/efeitos dos fármacos , Substâncias Húmicas , Poluentes Químicos da Água/toxicidade , Clorófitas , Água Doce , Espectroscopia de Ressonância Magnética , Fenol , Fotossíntese , Espectrometria de Fluorescência , Luz Solar
4.
Sci Total Environ ; 598: 188-197, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28441597

RESUMO

Agricultural activities in catchments can cause excessive nutrient loads in waterways. Catchment nitrogen (N) and phosphorus (P) flows may be intercepted and assimilated by riparian vegetation. While prior studies suggest that woody vegetation is preferable for reducing P loads, the question remains: is woody vegetation or grass cover more effective at reducing catchment N and P exports to waterways. To address this we investigated the relative importance of vegetation type, hydrologic and soil microbial processes on N and P losses from soil to a stream. The study involved the analysis of data from two soil microcosm experiments, and a field case study. We found P leaching loss from riparian zones depended significantly on vegetation type (woody vs. grass cover), with lower P exported from wooded riparian zones, irrespective of the scale of rainfall. For N leaching losses, the scale of rainfall had an effect. During high rainfall, vegetation type had a major effect on N leaching loss, with lower N exported from grassed verses wooded riparian zones. However, under low rainfall conditions, soil type and soil C and N stores, potential indicators of soil microbial activity, rather than vegetation cover, affected N leaching. It is hypothesized that soil microbes were reducing N removal under these conditions. We reason that nitrifiers may have played an important role in soil N cycling, as increased soil ammonium had a strong positive effect on nitrate leaching loads, mediated through soil nitrate stores. Whereas, N immobilization, via incorporation into microbial biomass, and denitrification processes appeared to be limited by C availability, with increased C associated with reduced N leaching. Overall, this study identified that N leaching losses from riparian zones appeared to be affected by two different processes, vegetative uptake and soil microbial processes, the relative importance of which was driven by hydrological conditions.

5.
Chemosphere ; 184: 969-980, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28655116

RESUMO

Here we link plant source phylogeny to its chemical characteristics and determine parameters useful for predicting DOM phytotoxicity towards algal monocultures. We found that DOM characterised using UV-visible spectroscopic indices and elemental analysis is useful for distinguishing DOM plant sources. Specifically, combined values of absorbance at 440 nm and coefficients for the spectral slope ratio, were used to distinguish between gymnosperm-leached DOM and that from angiosperms. In our bioassays, DOM leached from 4 g leaf L-1 resulted in over 40% inhibition of photosynthetic yield for the cyanobacterium, Cylindrospermopsis raciborskii, for eight of the nine plants tested. Significant variables for predicting inhibition of yield were DOM exposure time and plant source, or using an alternate model, exposure time and spectroscopic and elemental measures. Our study proposes spectroscopic indices which can estimate a plant source's contribution to aquatic DOM, may provide insights into ecological outcomes, such as phytotoxicity to algae. The cyanobacterium (C. raciborskii) was more sensitive to DOM than a green algae (Monoraphidium spp.), as identified in a subsequent dose-response experiment with five different DOM plant sources. Low level additions of angiosperm derived-DOM (i.e. 0.5 g L-1) were slight phytotoxic to Monoraphidium spp. causing 30% inhibition of yield, while C. raciborskii was not affected. Higher DOM additions (i.e. 2 g L-1) caused 100% inhibition of yield for C. raciborskii, while Monoraphidium spp. inhibition remained under 30%. The divergence in algal sensitivity to DOM indicates that in aquatic systems, DOM derived from catchment vegetation has the potential to affect algal assemblages.


Assuntos
Clorófitas/fisiologia , Substâncias Húmicas/toxicidade , Poluentes Químicos da Água/toxicidade , Clorófitas/efeitos dos fármacos , Cianobactérias , Água Doce , Substâncias Húmicas/análise , Fotossíntese , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA