Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 606(7916): 968-975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676490

RESUMO

Branched fatty acid (FA) esters of hydroxy FAs (HFAs; FAHFAs) are recently discovered lipids that are conserved from yeast to mammals1,2. A subfamily, palmitic acid esters of hydroxy stearic acids (PAHSAs), are anti-inflammatory and anti-diabetic1,3. Humans and mice with insulin resistance have lower PAHSA levels in subcutaneous adipose tissue and serum1. PAHSA administration improves glucose tolerance and insulin sensitivity and reduces inflammation in obesity, diabetes and immune-mediated diseases1,4-7. The enzyme(s) responsible for FAHFA biosynthesis in vivo remains unknown. Here we identified adipose triglyceride lipase (ATGL, also known as patatin-like phospholipase domain containing 2 (PNPLA2)) as a candidate biosynthetic enzyme for FAHFAs using chemical biology and proteomics. We discovered that recombinant ATGL uses a transacylation reaction that esterifies an HFA with a FA from triglyceride (TG) or diglyceride to produce FAHFAs. Overexpression of wild-type, but not catalytically dead, ATGL increases FAHFA biosynthesis. Chemical inhibition of ATGL or genetic deletion of Atgl inhibits FAHFA biosynthesis and reduces the levels of FAHFA and FAHFA-TG. Levels of endogenous and nascent FAHFAs and FAHFA-TGs are 80-90 per cent lower in adipose tissue of mice in which Atgl is knocked out specifically in the adipose tissue. Increasing TG levels by upregulating diacylglycerol acyltransferase (DGAT) activity promotes FAHFA biosynthesis, and decreasing DGAT activity inhibits it, reinforcing TGs as FAHFA precursors. ATGL biosynthetic transacylase activity is present in human adipose tissue underscoring its potential clinical relevance. In summary, we discovered the first, to our knowledge, biosynthetic enzyme that catalyses the formation of the FAHFA ester bond in mammals. Whereas ATGL lipase activity is well known, our data establish a paradigm shift demonstrating that ATGL transacylase activity is biologically important.


Assuntos
Aciltransferases , Ésteres , Ácidos Graxos , Hidroxiácidos , Aciltransferases/genética , Aciltransferases/metabolismo , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Diglicerídeos , Esterificação , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Humanos , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Resistência à Insulina , Camundongos , Triglicerídeos
2.
Proc Natl Acad Sci U S A ; 121(28): e2318691121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968121

RESUMO

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Resistência à Insulina , Obesidade , Animais , Masculino , Feminino , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo , Fezes/microbiologia , Camundongos Obesos
3.
EMBO Rep ; 25(5): 2479-2510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684907

RESUMO

The most prevalent genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia is a (GGGGCC)n nucleotide repeat expansion (NRE) occurring in the first intron of the C9orf72 gene (C9). Brain glucose hypometabolism is consistently observed in C9-NRE carriers, even at pre-symptomatic stages, but its role in disease pathogenesis is unknown. Here, we show alterations in glucose metabolic pathways and ATP levels in the brains of asymptomatic C9-BAC mice. We find that, through activation of the GCN2 kinase, glucose hypometabolism drives the production of dipeptide repeat proteins (DPRs), impairs the survival of C9 patient-derived neurons, and triggers motor dysfunction in C9-BAC mice. We also show that one of the arginine-rich DPRs (PR) could directly contribute to glucose metabolism and metabolic stress by inhibiting glucose uptake in neurons. Our findings provide a potential mechanistic link between energy imbalances and C9-ALS/FTD pathogenesis and suggest a feedforward loop model with potential opportunities for therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Glucose , Fenótipo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Glucose/metabolismo , Camundongos , Humanos , Biossíntese de Proteínas , Neurônios/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Expansão das Repetições de DNA/genética , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismo
4.
Nature ; 579(7797): 123-129, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103176

RESUMO

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1-9. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.


Assuntos
Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/química , Metabolômica , Microbiota/fisiologia , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/biossíntese , Ácido Cólico/química , Ácido Cólico/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Vida Livre de Germes , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
Nucleic Acids Res ; 49(2): 1046-1064, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33410911

RESUMO

Replication initiator proteins (Reps) from the HUH-endonuclease superfamily process specific single-stranded DNA (ssDNA) sequences to initiate rolling circle/hairpin replication in viruses, such as crop ravaging geminiviruses and human disease causing parvoviruses. In biotechnology contexts, Reps are the basis for HUH-tag bioconjugation and a critical adeno-associated virus genome integration tool. We solved the first co-crystal structures of Reps complexed to ssDNA, revealing a key motif for conferring sequence specificity and for anchoring a bent DNA architecture. In combination, we developed a deep sequencing cleavage assay, termed HUH-seq, to interrogate subtleties in Rep specificity and demonstrate how differences can be exploited for multiplexed HUH-tagging. Together, our insights allowed engineering of only four amino acids in a Rep chimera to predictably alter sequence specificity. These results have important implications for modulating viral infections, developing Rep-based genomic integration tools, and enabling massively parallel HUH-tag barcoding and bioconjugation applications.


Assuntos
DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Desoxirribonuclease I/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Engenharia de Proteínas/métodos , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Circoviridae/enzimologia , Sequência Conservada , Cristalografia por Raios X , DNA Helicases/química , DNA de Cadeia Simples/química , Desoxirribonuclease I/química , Biblioteca Gênica , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Vírus de Plantas/enzimologia , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Origem de Replicação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Endonucleases Específicas para DNA e RNA de Cadeia Simples/química , Especificidade por Substrato , Transativadores/química , Proteínas Virais/química
6.
Ann Hematol ; 101(12): 2627-2631, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36194257

RESUMO

Acquired von Willebrand syndrome (AVWS) is a rare hematologic disorder characterized by quantitative or qualitative defects of von Willebrand factor (vWF), a protein crucial for normal hemostasis. AVWS has been described in association with several pathologic entities with varied mechanisms. Among these, lymphoproliferative disorders are the most common, with monoclonal gammopathy of undetermined significance (MGUS) being the most frequently reported. AVWS in this setting is commonly associated with the development of bleeding that is clinically challenging to manage due to accelerated clearance of vWF, limiting the utility of many conventional treatment modalities such as DDAVP or vWF/FVIII. We report a case of a 43-year-old male who was sent to our institution for new-onset easy bruising and laboratories concerning for von Willebrand disease (vWD). Further diagnostic workup revealed evidence of an IgG monoclonal gammopathy and findings suggestive of vWF inhibition. Ultimately, he was found to have monoclonal gammopathy of clinical significance (MGCS)-associated AVWS refractory to conventional treatment but responsive to lenalidomide and dexamethasone. This case suggests that lenalidomide may be suitable for patients with AVWS secondary to MGCS.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Paraproteinemias , Doenças de von Willebrand , Masculino , Humanos , Adulto , Doenças de von Willebrand/complicações , Doenças de von Willebrand/tratamento farmacológico , Gamopatia Monoclonal de Significância Indeterminada/complicações , Gamopatia Monoclonal de Significância Indeterminada/tratamento farmacológico , Fator de von Willebrand/metabolismo , Lenalidomida/uso terapêutico , Paraproteinemias/complicações , Paraproteinemias/tratamento farmacológico , Paraproteinemias/diagnóstico
7.
J Lipid Res ; 62: 100108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34418413

RESUMO

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids with antidiabetic and anti-inflammatory effects. Each FAHFA family consists of esters with different acyl chains and multiple isomers with branch points at different carbons. Some FAHFAs, including palmitic acid hydroxy stearic acids (PAHSAs), improve insulin sensitivity and glucose tolerance in mice by enhancing glucose-stimulated insulin secretion (GSIS), insulin-stimulated glucose transport, and insulin action to suppress hepatic glucose production and reducing adipose tissue inflammation. However, little is known about the biological effects of other FAHFAs. Here, we investigated whether PAHSAs, oleic acid hydroxy stearic acid, palmitoleic acid hydroxy stearic acid, and stearic acid hydroxy stearic acid potentiate GSIS in ß-cells and human islets, insulin-stimulated glucose uptake in adipocytes, and anti-inflammatory effects in immune cells. We also investigated whether they activate G protein-coupled receptor 40, which mediates the effects of PAHSAs on insulin secretion and sensitivity in vivo. We show that many FAHFAs potentiate GSIS, activate G protein-coupled receptor 40, and attenuate LPS-induced chemokine and cytokine expression and secretion and phagocytosis in immune cells. However, fewer FAHFAs augment insulin-stimulated glucose uptake in adipocytes. S-9-PAHSA, but not R-9-PAHSA, potentiated GSIS and glucose uptake, while both stereoisomers had anti-inflammatory effects. FAHFAs containing unsaturated acyl chains with higher branching from the carboxylate head group are more likely to potentiate GSIS, whereas FAHFAs with lower branching are more likely to be anti-inflammatory. This study provides insight into the specificity of the biological actions of different FAHFAs and could lead to the development of FAHFAs to treat metabolic and immune-mediated diseases.


Assuntos
Ésteres/metabolismo , Ácidos Graxos/metabolismo , Adulto , Ésteres/química , Ácidos Graxos/química , Feminino , Glucose/metabolismo , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Estereoisomerismo
8.
J Chem Phys ; 151(4): 044202, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370517

RESUMO

Reported is an experimental and computational investigation of the low temperature heat capacity, thermodynamic functions, and thermal conductivity of stoichiometric, polycrystalline CeO2. The experimentally measured heat capacity at T < 15 K provides an important correction to the historically accepted experimental values, and the low temperature thermal conductivity serves as the most comprehensive data set at T < 400 K available. Below 10 K, the heat capacity is observed to obey the Debye T3 law, with a Debye temperature of ΘD = 455 K. The entropy, enthalpy, and Gibbs free energy functions are obtained from the experimental heat capacity and compared with predictions from Hubbard-corrected density functional perturbation theory calculations using the Perdew, Burke, and Ernzerhof parameterization revised for solids. The thermal conductivity is determined using the Maldonado continuous measurement technique, along with laser flash analysis, and analyzed according to the Klemens-Callaway model.

9.
Anal Chem ; 90(8): 5358-5365, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578702

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous lipids with antidiabetic and anti-inflammatory activities. Interest in these lipids is due to their unique biological activites and the observation that insulin-resistant people have lower palmitic acid esters of hydroxystearic acid (PAHSA) levels, suggesting that a FAHFA deficiency may contribute to metabolic disease. Rigorous testing of this hypothesis will require the measurement of many clinical samples; however, current analytical workflows are too slow to enable samples to be analyzed quickly. Here we describe the development of a significantly faster workflow to measure FAHFAs that optimizes the fractionation and chromatography of these lipids. We can measure FAHFAs in 30 min with this new protocol versus 90 min using the older protocol with comparable performance in regioisomer detection and quantitation. We also discovered through this optimization that oleic acid esters of hydroxystearic acids (OAHSAs), another family of FAHFAs, have a much lower background signal than PAHSAs, which makes them easier to measure. Our faster workflow was able to quantify changes in PAHSAs and OAHSAs in mouse tissues and human plasma, highlighting the potential of this protocol for basic and clinical applications.


Assuntos
Ésteres/análise , Ácidos Graxos/análise , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Extração em Fase Sólida
10.
J Am Chem Soc ; 139(13): 4943-4947, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28350171

RESUMO

Lipids have fundamental roles in the structure, energetics, and signaling of cells and organisms. The recent discovery of fatty acid esters of hydroxy fatty acids (FAHFAs), lipids with potent antidiabetic and anti-inflammatory activities, indicates that our understanding of the composition of lipidome and the function of lipids is incomplete. The ability to synthesize and test FAHFAs was critical in elucidating the roles of these lipids, but these studies were performed with racemic mixtures, and the role of stereochemistry remains unexplored. Here, we synthesized the R- and S- palmitic acid ester of 9-hydroxystearic acid (R-9-PAHSA, S-9-PAHSA). Access to highly enantioenriched PAHSAs enabled the development of a liquid chromatography-mass spectrometry (LC-MS) method to separate and quantify R- and S-9-PAHSA, and this approach identified R-9-PAHSA as the predominant stereoisomer that accumulates in adipose tissues from transgenic mice where FAHFAs were first discovered. Furthermore, biochemical analysis of 9-PAHSA biosynthesis and degradation indicate that the enzymes and pathways for PAHSA production are stereospecific, with cell lines favoring the production of R-9-PAHSA and carboxyl ester lipase (CEL), a PAHSA degradative enzyme, selectively hydrolyzing S-9-PAHSA. These studies highlight the role of stereochemistry in the production and degradation of PAHSAs and define the endogenous stereochemistry of 9-PAHSA in adipose tissue. This information will be useful in the identification and characterization of the pathway responsible for PAHSA biosynthesis, and access to enantiopure PAHSAs will elucidate the role of stereochemistry in PAHSA activity and metabolism in vivo.


Assuntos
Tecido Adiposo/química , Ésteres/química , Ácido Palmítico/química , Ácidos Esteáricos/química , Tecido Adiposo/metabolismo , Animais , Ésteres/síntese química , Ésteres/metabolismo , Células HEK293 , Humanos , Lipase/metabolismo , Lipídeos/química , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Ácido Palmítico/síntese química , Ácido Palmítico/metabolismo , Ácidos Esteáricos/metabolismo , Estereoisomerismo
11.
Bioorg Med Chem Lett ; 25(19): 4342-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26259803

RESUMO

The scalable syntheses of four oxygenated triterpenes have been implemented to access substantial quantities of maslinic acid, 3-epi-maslinic acid, corosolic acid, and 3-epi-corosolic acid. Semi-syntheses proceed starting from the natural products oleanolic acid and ursolic acid. Proceeding over five steps, each of the four compounds can be synthesized on the gram scale. Divergent diastereoselective reductions of α-hydroxy ketones provided access to the four targeted diol containing compounds from two precursors of the oleanane or ursane lineage. These compounds were subsequently evaluated for their ability to inhibit inflammatory gene expression in a mouse model of chemically induced skin inflammation. All compounds possessed the ability to inhibit the expression of one or more inflammatory genes induced by 12-O-tetradecanoylphorbol-13 acetate in mouse skin, however, three of the compounds, corosolic acid, 3-epi-corosolic acid and maslinic acid were more effective than the others. The availability of gram quantities will allow further testing of these compounds for potential anti-inflammatory activities as well as cancer chemopreventive activity.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Citocinas/antagonistas & inibidores , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Oxigênio/química , Pele/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Citocinas/genética , Feminino , Camundongos , Camundongos Endogâmicos , Conformação Molecular , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Pele/metabolismo , Triterpenos/síntese química , Ácido Ursólico
12.
Clin Chim Acta ; 560: 119747, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788890

RESUMO

CONTEXT: Elevated 3-hydroxyisovaleryl-/2-methyl-3-hydroxybutyryl (C5-OH) acylcarnitine in blood can result from several genetic enzyme deficiencies: 3-methylcrotonyl CoA carboxylase deficiency, 3-hydroxy 3-methylglutaryl-CoA lyase deficiency, beta-ketothiolase deficiency, 2-methyl 3-hydroxybutyryl-CoA dehydrogenase deficiency, primary 3-methylglutaconic aciduria, multiple biotin-dependent carboxylase deficiencies and biotin metabolism disorders. Biochemical tests help differentiate these causes while molecular tests are usually required for definitive diagnosis. CASE DESCRIPTION: We reported an infant girl with newborn screen findings of elevated C5-OH acylcarnitine. She had further confirmational biochemical testing including plasma acylcarnitines, urine organic acids and urine acylglycines. Patient's urine organic acid profile showed markedly increased 3-hydroxyisovaleric acid and 3-methylcrotonylglycine. Urine acylglycine test reported a large increase of 3-methylcrotonylglycine and plasma acylcarnitine test repeated the finding of elevated C5-OH acylcarnitine together with propionyl acylcarnitine elevation. These results point to multiple biotin-dependent carboxylase deficiency. Molecular tests revealed a homozygous mutation in the holocarboxylase synthetase gene that is consistent with her biochemical test findings. This case demonstrated the critical role of newborn screen in identifying inborn errors of metabolism that may otherwise be missed and lead to severe morbidity later in life. It also showcased that both biochemical and molecular tests are essential tools in the diagnosis.


Assuntos
Carnitina , Deficiência de Holocarboxilase Sintetase , Humanos , Feminino , Carnitina/análogos & derivados , Carnitina/sangue , Carnitina/urina , Deficiência de Holocarboxilase Sintetase/diagnóstico , Deficiência de Holocarboxilase Sintetase/genética , Recém-Nascido , Lactente
13.
Nat Biotechnol ; 42(2): 253-264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37142705

RESUMO

Realizing the promise of prime editing for the study and treatment of genetic disorders requires efficient methods for delivering prime editors (PEs) in vivo. Here we describe the identification of bottlenecks limiting adeno-associated virus (AAV)-mediated prime editing in vivo and the development of AAV-PE vectors with increased PE expression, prime editing guide RNA stability and modulation of DNA repair. The resulting dual-AAV systems, v1em and v3em PE-AAV, enable therapeutically relevant prime editing in mouse brain (up to 42% efficiency in cortex), liver (up to 46%) and heart (up to 11%). We apply these systems to install putative protective mutations in vivo for Alzheimer's disease in astrocytes and for coronary artery disease in hepatocytes. In vivo prime editing with v3em PE-AAV caused no detectable off-target effects or significant changes in liver enzymes or histology. Optimized PE-AAV systems support the highest unenriched levels of in vivo prime editing reported to date, facilitating the study and potential treatment of diseases with a genetic component.


Assuntos
Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Camundongos , Animais , Edição de Genes/métodos , Fígado/metabolismo , Hepatócitos/metabolismo , Encéfalo , Sistemas CRISPR-Cas
14.
Science ; 383(6688): eadk4422, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484051

RESUMO

Conditional protein degradation tags (degrons) are usually >100 amino acids long or are triggered by small molecules with substantial off-target effects, thwarting their use as specific modulators of endogenous protein levels. We developed a phage-assisted continuous evolution platform for molecular glue complexes (MG-PACE) and evolved a 36-amino acid zinc finger (ZF) degron (SD40) that binds the ubiquitin ligase substrate receptor cereblon in complex with PT-179, an orthogonal thalidomide derivative. Endogenous proteins tagged in-frame with SD40 using prime editing are degraded by otherwise inert PT-179. Cryo-electron microscopy structures of SD40 in complex with ligand-bound cereblon revealed mechanistic insights into the molecular basis of SD40's activity and specificity. Our efforts establish a system for continuous evolution of molecular glue complexes and provide ZF tags that overcome shortcomings associated with existing degrons.


Assuntos
Degrons , Evolução Molecular Direcionada , Proteólise , Ubiquitina-Proteína Ligases , Dedos de Zinco , Microscopia Crioeletrônica , Talidomida/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Degrons/genética , Dedos de Zinco/genética , Quimera de Direcionamento de Proteólise , Evolução Molecular Direcionada/métodos , Humanos
15.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808673

RESUMO

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. PAHSAs are a class of lipids with anti-diabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating high fat diet (HFD)-fed germ-free mice with PAHSAs does not improve insulin sensitivity. However, transfer of feces from PAHSA-treated, but not Vehicle-treated, chow-fed mice increases insulin-sensitivity in HFD-fed germ free mice. Thus, the gut microbiota is necessary for and can transmit the insulin-sensitizing effects of PAHSAs in HFD-fed germ-free mice. Functional analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron ( Bt ) and with insulin sensitivity resulting from PAHSA treatment. Bt supplementation in HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation versus chow-fed controls, effects that were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating probiotic effects. Altogether, these studies highlight the fact that lipids can modulate the gut microbiota resulting in improvement in host metabolism and that PAHSA-induced changes in the microbiota result in at least some of their insulin-sensitizing effects in female mice.

16.
Nat Biomed Eng ; 7(5): 616-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37069266

RESUMO

Sickle-cell disease (SCD) is caused by an A·T-to-T·A transversion mutation in the ß-globin gene (HBB). Here we show that prime editing can correct the SCD allele (HBBS) to wild type (HBBA) at frequencies of 15%-41% in haematopoietic stem and progenitor cells (HSPCs) from patients with SCD. Seventeen weeks after transplantation into immunodeficient mice, prime-edited SCD HSPCs maintained HBBA levels and displayed engraftment frequencies, haematopoietic differentiation and lineage maturation similar to those of unedited HSPCs from healthy donors. An average of 42% of human erythroblasts and reticulocytes isolated 17 weeks after transplantation of prime-edited HSPCs from four SCD patient donors expressed HBBA, exceeding the levels predicted for therapeutic benefit. HSPC-derived erythrocytes carried less sickle haemoglobin, contained HBBA-derived adult haemoglobin at 28%-43% of normal levels and resisted hypoxia-induced sickling. Minimal off-target editing was detected at over 100 sites nominated experimentally via unbiased genome-wide analysis. Our findings support the feasibility of a one-time prime editing SCD treatment that corrects HBBS to HBBA, does not require any viral or non-viral DNA template and minimizes undesired consequences of DNA double-strand breaks.


Assuntos
Anemia Falciforme , Edição de Genes , Adulto , Humanos , Camundongos , Animais , Sistemas CRISPR-Cas , Globinas beta/genética , Anemia Falciforme/terapia , Anemia Falciforme/genética , Células-Tronco Hematopoéticas , Fenótipo , DNA
17.
Neurotherapeutics ; 19(4): 1102-1118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35773551

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily affects motor neurons and causes muscle atrophy, paralysis, and death. While a great deal of progress has been made in deciphering the underlying pathogenic mechanisms, no effective treatments for the disease are currently available. This is mainly due to the high degree of complexity and heterogeneity that characterizes the disease. Over the last few decades of research, alterations to bioenergetic and metabolic homeostasis have emerged as a common denominator across many different forms of ALS. These alterations are found at the cellular level (e.g., mitochondrial dysfunction and impaired expression of monocarboxylate transporters) and at the systemic level (e.g., low BMI and hypermetabolism) and tend to be associated with survival or disease outcomes in patients. Furthermore, an increasing amount of preclinical evidence and some promising clinical evidence suggests that targeting energy metabolism could be an effective therapeutic strategy. This review examines the evidence both for and against these ALS-associated metabolic alterations and highlights potential avenues for therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Metabolismo Energético/fisiologia , Homeostase , Neurônios Motores/patologia
18.
PLoS One ; 17(6): e0267682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657963

RESUMO

Evaluating novel compounds for neuroprotective effects in animal models of traumatic brain injury (TBI) is a protracted, labor-intensive and costly effort. However, the present lack of effective treatment options for TBI, despite decades of research, shows the critical need for alternative methods for screening new drug candidates with neuroprotective properties. Because natural products have been a leading source of new therapeutic agents for human diseases, we used an in vitro model of stretch injury to rapidly assess pro-survival effects of three bioactive compounds, two isolated from natural products (clovanemagnolol [CM], vinaxanthone [VX]) and the third, a dietary compound (pterostilbene [PT]) found in blueberries. The stretch injury experiments were not used to validate drug efficacy in a comprehensive manner but used primarily, as proof-of-principle, to demonstrate that the neuroprotective potential of each bioactive agent can be quickly assessed in an immortalized hippocampal cell line in lieu of comprehensive testing in animal models of TBI. To gain mechanistic insights into potential molecular mechanisms of neuroprotective effects, we performed a pathway-specific PCR array analysis of the effects of CM on the rat hippocampus and microRNA sequencing analysis of the effects of VX and PT on cultured hippocampal progenitor neurons. We show that the neuroprotective properties of these natural compounds are associated with altered expression of several genes or microRNAs that have functional roles in neurodegeneration or cell survival. Our approach could help in quickly assessing multiple natural products for neuroprotective properties and expedite the process of new drug discovery for TBI therapeutics.


Assuntos
Produtos Biológicos , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Animais , Produtos Biológicos/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Hipocampo/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos
19.
Nat Biotechnol ; 40(5): 731-740, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34887556

RESUMO

The targeted deletion, replacement, integration or inversion of genomic sequences could be used to study or treat human genetic diseases, but existing methods typically require double-strand DNA breaks (DSBs) that lead to undesired consequences, including uncontrolled indel mixtures and chromosomal abnormalities. Here we describe twin prime editing (twinPE), a DSB-independent method that uses a prime editor protein and two prime editing guide RNAs (pegRNAs) for the programmable replacement or excision of DNA sequences at endogenous human genomic sites. The two pegRNAs template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, which replace the endogenous DNA sequence between the prime-editor-induced nick sites. When combined with a site-specific serine recombinase, twinPE enabled targeted integration of gene-sized DNA plasmids (>5,000 bp) and targeted sequence inversions of 40 kb in human cells. TwinPE expands the capabilities of precision gene editing and might synergize with other tools for the correction or complementation of large or complex human pathogenic alleles.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sequência de Bases , Inversão Cromossômica , DNA/genética , Edição de Genes/métodos , Humanos , RNA Guia de Cinetoplastídeos/genética
20.
Dalton Trans ; 49(30): 10452-10462, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32678407

RESUMO

Changes in chemical speciation of uranium oxides following storage under varied conditions of temperature and relative humidity are valuable for characterizing material provenance. In this study, subsamples of high purity α-UO3 were stored under four sets of controlled conditions of temperature and relative humidity over several years, and then measured periodically for chemical speciation. Powder X-ray diffraction (XRD) analysis and extended X-ray absorption fine structure spectroscopy confirm hydration of α-UO3 to a schoepite-like end product following storage under each of the varied storage conditions, but the species formed during exposure to the lower relative humidity and lower temperature condition follows different trends from those formed under the other three storage conditions (high relative humidity with high or low temperatures, and low relative humidity with a high temperature). Thermogravimetry coupled with XRD analysis was carried out to distinguish desorption pathways of water from the hydrated end products. Density functional theory calculations discern changes in the structure of α-UO3 following incorporation of 1, 2 or 3 H2O molecules or 1, 2 or 3 OH groups into the orthorhombic lattice, revealing differences in lattice constants, U-O bond lengths, and U-U distances. The collective results from this analysis are in contrast to analogous studies that report that U3O8 is oxidized and hydrated in air during storage under high relative humidity conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA