Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 185(25): 4811-4825.e17, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36423629

RESUMO

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal immunoglobulin A (IgA) and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern of alpha, beta, and delta lineages, while their ability to neutralize Omicron sub-lineages was lower. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T cell responses, including tissue-resident memory cells in the lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2/genética
2.
PLoS Pathog ; 20(7): e1012339, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950078

RESUMO

The regulation of inflammatory responses and pulmonary disease during SARS-CoV-2 infection is incompletely understood. Here we examine the roles of the prototypic pro- and anti-inflammatory cytokines IFNγ and IL-10 using the rhesus macaque model of mild COVID-19. We find that IFNγ drives the development of 18fluorodeoxyglucose (FDG)-avid lesions in the lungs as measured by PET/CT imaging but is not required for suppression of viral replication. In contrast, IL-10 limits the duration of acute pulmonary lesions, serum markers of inflammation and the magnitude of virus-specific T cell expansion but does not impair viral clearance. We also show that IL-10 induces the subsequent differentiation of virus-specific effector T cells into CD69+CD103+ tissue resident memory cells (Trm) in the airways and maintains Trm cells in nasal mucosal surfaces, highlighting an unexpected role for IL-10 in promoting airway memory T cells during SARS-CoV-2 infection of macaques.

3.
Proc Natl Acad Sci U S A ; 116(7): 2640-2645, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30679280

RESUMO

Established T cell dysfunction is a barrier to antitumor responses, and checkpoint blockade presumably reverses this. Many patients fail to respond to treatment and/or develop autoimmune adverse events. The underlying reason for T cell responsiveness remains elusive. Here, we show that susceptibility to checkpoint blockade is dependent on the activation status of T cells. Newly activated self-specific CD8 T cells respond to checkpoint blockade and cause autoimmunity, which is mitigated by inhibiting the mechanistic target of rapamycin. However, once tolerance is established, self-specific CD8 T cells display a gene signature comparable to tumor-specific CD8 T cells in a fixed state of dysfunction. Tolerant self-specific CD8 T cells do not respond to single or combinatorial dosing of anti-CTLA4, anti-PD-L1, anti-PD-1, anti-LAG-3, and/or anti-TIM-3. Despite this, T cell responsiveness can be induced by vaccination with cognate antigen, which alters the previously fixed transcriptional signature and increases antigen-sensing machinery. Antigenic reeducation of tolerant T cells synergizes with checkpoint blockade to generate functional CD8 T cells, which eliminate tumors without concomitant autoimmunity and are transcriptionally distinct from classic effector T cells. These data demonstrate that responses to checkpoint blockade are dependent on the activation state of a T cell and show that checkpoint blockade-insensitive CD8 T cells can be induced to respond to checkpoint blockade with robust antigenic stimulation to participate in tumor control.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular , Animais , Antígenos/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Proliferação de Células , Tolerância Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
4.
J Immunol ; 196(7): 3054-63, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903479

RESUMO

Developing vaccine strategies to generate high numbers of Ag-specific CD8 T cells may be necessary for protection against recalcitrant pathogens. Heterologous prime-boost-boost immunization has been shown to result in large quantities of functional memory CD8 T cells with protective capacities and long-term stability. Completing the serial immunization steps for heterologous prime-boost-boost can be lengthy, leaving the host vulnerable for an extensive period of time during the vaccination process. We show in this study that shortening the intervals between boosting events to 2 wk results in high numbers of functional and protective Ag-specific CD8 T cells. This protection is comparable to that achieved with long-term boosting intervals. Short-boosted Ag-specific CD8 T cells display a canonical memory T cell signature associated with long-lived memory and have identical proliferative potential to long-boosted T cells Both populations robustly respond to antigenic re-exposure. Despite this, short-boosted Ag-specific CD8 T cells continue to contract gradually over time, which correlates to metabolic differences between short- and long-boosted CD8 T cells at early memory time points. Our studies indicate that shortening the interval between boosts can yield abundant, functional Ag-specific CD8 T cells that are poised for immediate protection; however, this is at the expense of forming stable long-term memory.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunização Secundária , Memória Imunológica , Vacinação , Animais , Antígenos/imunologia , Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/imunologia , Epitopos de Linfócito T/imunologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Fenótipo , Fatores de Tempo , Vacinas Virais/imunologia
5.
J Immunol ; 194(8): 3551-3555, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769925

RESUMO

Programmed death-1 (PD-1) promotes T cell tolerance. Despite therapeutically targeting this pathway for chronic infections and tumors, little is known about how different T cell subsets are affected during blockade. We examined PD-1/PD ligand 1 (PD-L1) regulation of self-antigen-specific CD4 and CD8 T cells in autoimmune-susceptible models. PD-L1 blockade increased insulin-specific effector CD4 T cells in type 1 diabetes. However, anergic islet-specific CD4 T cells were resistant to PD-L1 blockade. Additionally, PD-L1 was critical for induction, but not maintenance, of CD8 T cell intestinal tolerance. PD-L1 blockade enhanced functionality of effector T cells, whereas established tolerant or anergic T cells were not dependent on PD-1/PD-L1 signaling to remain unresponsive. This highlights the existence of Ag-experienced T cell subsets that do not rely on PD-1/PD-L1 regulation. These findings illustrate how positive treatment outcomes and autoimmunity development during PD-1/PD-L1 inhibition are linked to the differentiation state of a T cell.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Anergia Clonal , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/patologia , Feminino , Tolerância Imunológica/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Transdução de Sinais/genética
6.
J Immunol ; 193(5): 2067-71, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25070853

RESUMO

Mucosal tissues are subject to frequent pathogen exposure and are major sites for transmission of infectious disease. CD8 T cells play a critical role in controlling mucosa-acquired infections even though their migration into mucosal tissues is tightly regulated. The mechanisms and signals that control the formation of tissue-resident memory CD8 T cells are poorly understood; however, one key regulator of memory CD8 T cell differentiation, mammalian target of rapamycin kinase, can be inhibited by rapamycin. We report that, despite enhancing the formation of memory CD8 T cells in secondary lymphoid tissues, rapamycin inhibits the formation of resident memory CD8 T cells in the intestinal and vaginal mucosa. The ability of rapamycin to block the formation of functional resident CD8 T cells in mucosal tissues protected mice from a model of CD8 T cell-mediated lethal intestinal autoimmunity. These findings demonstrate an opposing role for mammalian target of rapamycin in the formation of resident versus nonresident CD8 T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas/fisiologia , Memória Imunológica/fisiologia , Mucosa Intestinal/lesões , Modelos Imunológicos , Serina-Treonina Quinases TOR/imunologia , Animais , Autoimunidade/fisiologia , Linfócitos T CD8-Positivos/citologia , Feminino , Mucosa Intestinal/citologia , Camundongos , Vagina/citologia , Vagina/imunologia
7.
Nat Commun ; 15(1): 3553, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670948

RESUMO

Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Masculino , Anticorpos Antivirais/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/imunologia , Vetores Genéticos/genética , Anticorpos Neutralizantes/imunologia , Administração Intranasal , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Imunoglobulina A/imunologia , Linfócitos T CD4-Positivos/imunologia , Humanos
8.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097292

RESUMO

Control of Mycobacterium tuberculosis (Mtb) infection requires generation of T cells that migrate to granulomas, complex immune structures surrounding sites of bacterial replication. Here we compared the gene expression profiles of T cells in pulmonary granulomas, bronchoalveolar lavage, and blood of Mtb-infected rhesus macaques to identify granuloma-enriched T cell genes. TNFRSF8/CD30 was among the top genes upregulated in both CD4 and CD8 T cells from granulomas. In mice, CD30 expression on CD4 T cells is required for survival of Mtb infection, and there is no major role for CD30 in protection by other cell types. Transcriptomic comparison of WT and CD30-/- CD4 T cells from the lungs of Mtb-infected mixed bone marrow chimeric mice showed that CD30 directly promotes CD4 T cell differentiation and the expression of multiple effector molecules. These results demonstrate that the CD30 co-stimulatory axis is highly upregulated on granuloma T cells and is critical for protective T cell responses against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Linfócitos T CD4-Positivos , Diferenciação Celular , Granuloma/metabolismo , Macaca mulatta , Tuberculose/microbiologia , Antígeno Ki-1/imunologia
9.
Front Immunol ; 14: 1240419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720210

RESUMO

Viral co-infections have been implicated in worsening tuberculosis (TB) and during the COVID-19 pandemic, the global rate of TB-related deaths has increased for the first time in over a decade. We and others have previously shown that a resolved prior or concurrent influenza A virus infection in Mycobacterium tuberculosis (Mtb)-infected mice resulted in increased pulmonary bacterial burden, partly through type I interferon (IFN-I)-dependent mechanisms. Here we investigated whether SARS-CoV-2 (SCV2) co-infection could also negatively affect bacterial control of Mtb. Importantly, we found that K18-hACE2 transgenic mice infected with SCV2 one month before, or months after aerosol Mtb exposure did not display exacerbated Mtb infection-associated pathology, weight loss, nor did they have increased pulmonary bacterial loads. However, pre-existing Mtb infection at the time of exposure to the ancestral SCV2 strain in infected K18-hACE2 transgenic mice or the beta variant (B.1.351) in WT C57Bl/6 mice significantly limited early SCV2 replication in the lung. Mtb-driven protection against SCV2 increased with higher bacterial doses and did not require IFN-I, TLR2 or TLR9 signaling. These data suggest that SCV2 co-infection does not exacerbate Mtb infection in mice, but rather the inflammatory response generated by Mtb infection in the lungs at the time of SCV2 exposure restricts viral replication.


Assuntos
COVID-19 , Coinfecção , Interferon Tipo I , Mycobacterium tuberculosis , Camundongos , Animais , Humanos , SARS-CoV-2 , Pandemias , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
10.
Cell Rep ; 39(9): 110896, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649361

RESUMO

HIV/Mycobacterium tuberculosis (Mtb) co-infected individuals have an increased risk of tuberculosis prior to loss of peripheral CD4 T cells, raising the possibility that HIV co-infection leads to CD4 T cell depletion in lung tissue before it is evident in blood. Here, we use rhesus macaques to study the early effects of simian immunodeficiency virus (SIV) co-infection on pulmonary granulomas. Two weeks after SIV inoculation of Mtb-infected macaques, Mtb-specific CD4 T cells are dramatically depleted from granulomas, before CD4 T cell loss in blood, airways, and lymph nodes, or increases in bacterial loads or radiographic evidence of disease. Spatially, CD4 T cells are preferentially depleted from the granuloma core and cuff relative to B cell-rich regions. Moreover, live imaging of granuloma explants show that intralesional CD4 T cell motility is reduced after SIV co-infection. Thus, granuloma CD4 T cells may be decimated before many co-infected individuals experience the first symptoms of acute HIV infection.


Assuntos
Coinfecção , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Tuberculose , Animais , Linfócitos T CD4-Positivos , Coinfecção/patologia , Granuloma/patologia , Infecções por HIV/complicações , Infecções por HIV/patologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Tuberculose/patologia
11.
bioRxiv ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35665011

RESUMO

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways, as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal IgA and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T-cell responses, including tissue-resident memory cells in lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.

12.
Sci Immunol ; : eabo0535, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35271298

RESUMO

SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. Here, we used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated monocytes and macrophages in the bronchoalveolar lavage (BAL) were found on days 3-4 post-infection. Virus-specific effector CD8+ and CD4+ T cells became detectable in the BAL and lung tissue on days 7-10, after viral RNA, radiologic evidence of lung inflammation, and IFN-activated myeloid cells had substantially declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs of rhesus macaques prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of antigen-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.

13.
bioRxiv ; 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36172119

RESUMO

The pro- and anti-inflammatory pathways that determine the balance of inflammation and viral control during SARS-CoV-2 infection are not well understood. Here we examine the roles of IFNγ and IL-10 in regulating inflammation, immune cell responses and viral replication during SARS-CoV-2 infection of rhesus macaques. IFNγ blockade tended to decrease lung inflammation based on 18 FDG-PET/CT imaging but had no major impact on innate lymphocytes, neutralizing antibodies, or antigen-specific T cells. In contrast, IL-10 blockade transiently increased lung inflammation and enhanced accumulation of virus-specific T cells in the lower airways. However, IL-10 blockade also inhibited the differentiation of virus-specific T cells into airway CD69 + CD103 + T RM cells. While virus-specific T cells were undetectable in the nasal mucosa of all groups, IL-10 blockade similarly reduced the frequency of total T RM cells in the nasal mucosa. Neither cytokine blockade substantially affected viral load and infection ultimately resolved. Thus, in the macaque model of mild COVID-19, the pro- and anti-inflammatory effects of IFNγ and IL-10 have no major role in control of viral replication. However, IL-10 has a key role in suppressing the accumulation of SARS-CoV-2-specific T cells in the lower airways, while also promoting T RM at respiratory mucosal surfaces.

14.
Mucosal Immunol ; 14(1): 199-208, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32811991

RESUMO

Mucosal-associated invariant T (MAIT) cells are potential targets of vaccination and host-directed therapeutics for tuberculosis, but the role of MAIT cells during Mycobacterium tuberculosis (Mtb) infection in vivo is not well understood. Here we find that following Mtb infection MAIT cells mount minimal responses, and MAIT cell-deficient MR1-/- mice display normal survival. Preinfection expansion of MAIT cells through 5-OP-RU vaccination fails to protect against subsequent Mtb challenge. In fact, 5-OP-RU vaccination delays Mtb-specific CD4 T cell priming in lung-draining lymph nodes, and conversely MR1 deficiency or blockade accelerates T cell priming. The MAIT cell-mediated delay in T cell priming is partly dependent on TGF-ß. Surprisingly, 5-OP-RU treatment during chronic infection drives MAIT cell expansion and an IL-17A-dependent reduction in bacterial loads. Thus, during early infection MAIT cells directly contribute to the notoriously slow priming of CD4 T cells, but later during infection MAIT cell stimulation may be an effective host-directed therapy for tuberculosis.


Assuntos
Transferência Adotiva , Células T Invariantes Associadas à Mucosa/imunologia , Mycobacterium tuberculosis , Tuberculose/imunologia , Tuberculose/terapia , Transferência Adotiva/métodos , Animais , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Mycobacterium tuberculosis/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Fator de Crescimento Transformador beta/antagonistas & inibidores , Tuberculose/microbiologia , Tuberculose/prevenção & controle
15.
Sci Immunol ; 6(55)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452107

RESUMO

Boosting immune cell function by targeting the coinhibitory receptor PD-1 may have applications in the treatment of chronic infections. Here, we examine the role of PD-1 during Mycobacterium tuberculosis (Mtb) infection of rhesus macaques. Animals treated with anti-PD-1 monoclonal antibody developed worse disease and higher granuloma bacterial loads compared with isotype control-treated monkeys. PD-1 blockade increased the number and functionality of granuloma Mtb-specific CD8 T cells. In contrast, Mtb-specific CD4 T cells in anti-PD-1-treated macaques were not increased in number or function in granulomas, expressed increased levels of CTLA-4, and exhibited reduced intralesional trafficking in live imaging studies. In granulomas of anti-PD-1-treated animals, multiple proinflammatory cytokines were elevated, and more cytokines correlated with bacterial loads, leading to the identification of a role for caspase 1 in the exacerbation of tuberculosis after PD-1 blockade. Last, increased Mtb bacterial loads after PD-1 blockade were found to associate with the composition of the intestinal microbiota before infection in individual macaques. Therefore, PD-1-mediated coinhibition is required for control of Mtb infection in macaques, perhaps because of its role in dampening detrimental inflammation and allowing for normal CD4 T cell responses.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/efeitos adversos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Macaca mulatta , Masculino , Camundongos , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Índice de Gravidade de Doença , Exacerbação dos Sintomas , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/microbiologia
16.
Cell Rep ; 28(12): 3092-3104.e5, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533033

RESUMO

The immune system adapts to constitutive antigens to preserve self-tolerance, which is a major barrier for anti-tumor immunity. Antigen-specific reversal of tolerance constitutes a major goal to spur therapeutic applications. Here, we show that robust, iterative, systemic stimulation targeting tissue-specific antigens in the context of acute infections reverses established CD8+ T cell tolerance to self, including in T cells that survive negative selection. This strategy results in large numbers of circulating and resident memory self-specific CD8+ T cells that are widely distributed and can be co-opted to control established malignancies bearing self-antigen without concomitant autoimmunity. Targeted expansion of both self- and tumor neoantigen-specific T cells acts synergistically to boost anti-tumor immunity and elicits protection against aggressive melanoma. Our findings demonstrate that T cell tolerance can be re-adapted to responsiveness through robust antigenic exposure, generating self-specific CD8+ T cells that can be used for cancer treatment.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica , Imunidade Celular , Melanoma/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Melanoma/patologia , Melanoma/terapia , Camundongos , Camundongos Transgênicos
17.
Nat Commun ; 10(1): 567, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718505

RESUMO

The immunosuppressive tumor microenvironment limits the success of current immunotherapies. The host retains memory T cells specific for previous infections throughout the entire body that are capable of executing potent and immediate immunostimulatory functions. Here we show that virus-specific memory T cells extend their surveillance to mouse and human tumors. Reactivating these antiviral T cells can arrest growth of checkpoint blockade-resistant and poorly immunogenic tumors in mice after injecting adjuvant-free non-replicating viral peptides into tumors. Peptide mimics a viral reinfection event to memory CD8+ T cells, triggering antigen presentation and cytotoxic pathways within the tumor, activating dendritic cells and natural killer cells, and recruiting the adaptive immune system. Viral peptide treatment of ex vivo human tumors recapitulates immune activation gene expression profiles observed in mice. Lastly, peptide therapy renders resistant mouse tumors susceptible to PD-L1 blockade. Thus, re-stimulating known antiviral immunity may provide a unique therapeutic approach for cancer immunotherapy.


Assuntos
Imunoterapia/métodos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Criança , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Pessoa de Meia-Idade , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA