Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Neurophysiol ; 123(5): 2037-2063, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292116

RESUMO

Space travel presents a number of environmental challenges to the central nervous system, including changes in gravitational acceleration that alter the terrestrial synergies between perception and action, galactic cosmic radiation that can damage sensitive neurons and structures, and multiple factors (isolation, confinement, altered atmosphere, and mission parameters, including distance from Earth) that can affect cognition and behavior. Travelers to Mars will be exposed to these environmental challenges for up to 3 years, and space-faring nations continue to direct vigorous research investments to help elucidate and mitigate the consequences of these long-duration exposures. This article reviews the findings of more than 50 years of space-related neuroscience research on humans and animals exposed to spaceflight or analogs of spaceflight environments, and projects the implications and the forward work necessary to ensure successful Mars missions. It also reviews fundamental neurophysiology responses that will help us understand and maintain human health and performance on Earth.


Assuntos
Astronautas , Sistema Nervoso Central/fisiologia , Emoções/fisiologia , Marte , Desempenho Psicomotor/fisiologia , Voo Espacial , Vestíbulo do Labirinto/fisiologia , Ausência de Peso , Animais , Humanos , Ausência de Peso/efeitos adversos
2.
Environ Res ; 150: 470-481, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27419368

RESUMO

Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR.


Assuntos
Metilação de DNA/efeitos da radiação , Elementos Nucleotídeos Longos e Dispersos/genética , Radiação Ionizante , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Decitabina , Histonas/metabolismo , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Pulmão/metabolismo , Pulmão/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7
3.
Life Sci Space Res (Amst) ; 37: 78-87, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087182

RESUMO

PURPOSE: Astronauts on missions beyond low Earth orbit will be exposed to galactic cosmic radiation, and there is concern about potential adverse cardiovascular effects. Most of the research to identify cardiovascular risk of space radiation has been performed in rodent models. To aid in the translation of research results to humans, the current study identified long-term effects of high-energy charged particle irradiation on cardiovascular function and structure in a larger non-rodent animal model. MATERIALS AND METHODS: At the age of 12 months, male New Zealand white rabbits were exposed to whole-body protons (250 MeV) or oxygen ions (16O, 600 MeV/n) at a dose of 0 or 0.5 Gy and were followed for 12 months after irradiation. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 10- and 12-months post-irradiation. At 12 months after irradiation, blood cell counts and blood chemistry values were assessed, and cardiac tissue and aorta were collected for histological as well as molecular and biochemical analyses. Plasma was used for metabolomic analysis and to quantify common markers of cardiac injury. RESULTS: A small but significant decrease in the percentage of circulating lymphocytes and an increase in neutrophil percentage was seen 12 months after 0.5 Gy protons, while 16O exposure resulted in an increase in monocyte percentage. Markers of cardiac injury, cardiac troponin I (cTnI) and N-Terminal pro-B-type Natriuretic Peptide were modestly increased in the proton group, and cTnI was also increased after 16O. On the other hand, metabolomics on plasma at 12 months revealed no changes. Both types of irradiation demonstrated alterations in cardiac mitochondrial morphology and an increase in left ventricular protein levels of inflammatory cell marker CD68. However, changes in cardiac function were only mild. CONCLUSION: Low dose charged particle irradiation caused mild long-term changes in inflammatory markers, cardiac function, and structure in the rabbit heart, in line with previous studies in mouse and rat models.


Assuntos
Radiação Cósmica , Prótons , Humanos , Coelhos , Masculino , Ratos , Camundongos , Animais , Lactente , Oxigênio , Íons , Coração/efeitos da radiação , Relação Dose-Resposta à Radiação
4.
Front Physiol ; 13: 1008640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388106

RESUMO

Space exploration requires the characterization and management or mitigation of a variety of human health risks. Exposure to space radiation is one of the main health concerns because it has the potential to increase the risk of cancer, cardiovascular disease, and both acute and late neurodegeneration. Space radiation-induced decrements to the vascular system may impact the risk for cerebrovascular disease and consequent dementia. These risks may be independent or synergistic with direct damage to central nervous system tissues. The purpose of this work is to review epidemiological and experimental data regarding the impact of low-to-moderate dose ionizing radiation on the central nervous system and the cerebrovascular system. A proposed framework outlines how space radiation-induced effects on the vasculature may increase risk for both cerebrovascular dysfunction and neural and cognitive adverse outcomes. The results of this work suggest that there are multiple processes by which ionizing radiation exposure may impact cerebrovascular function including increases in oxidative stress, neuroinflammation, endothelial cell dysfunction, arterial stiffening, atherosclerosis, and cerebral amyloid angiopathy. Cerebrovascular adverse outcomes may also promote neural and cognitive adverse outcomes. However, there are many gaps in both the human and preclinical evidence base regarding the long-term impact of ionizing radiation exposure on brain health due to heterogeneity in both exposures and outcomes. The unique composition of the space radiation environment makes the translation of the evidence base from terrestrial exposures to space exposures difficult. Additional investigation and understanding of the impact of low-to-moderate doses of ionizing radiation including high (H) atomic number (Z) and energy (E) (HZE) ions on the cerebrovascular system is needed. Furthermore, investigation of how decrements in vascular systems may contribute to development of neurodegenerative diseases in independent or synergistic pathways is important for protecting the long-term health of astronauts.

5.
Clin Rev Bone Miner Metab ; 9(1): 54-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22826690

RESUMO

Damage to normal, nontumor bone tissue following therapeutic irradiation increases the risk of fracture among cancer patients. For example, women treated for various pelvic tumors have been shown to have a greater than 65% increased incidence of hip fracture by 5 years postradiotherapy. Another practical situation in which exposure to ionizing radiation may negatively impact skeletal integrity is during extended spaceflight missions. There is a limited understanding of how spaceflight-relevant doses and types of radiation can influence astronaut bone health, particularly when combined with the significant effects of mechanical unloading experienced in microgravity. Historically, negative effects on osteoblasts have been studied. Radiation exposure has been shown to damage osteoblast precursors. Damage to local vasculature has been observed, ranging from decreased lumen diameter to complete ablation within the irradiated volume, causing a state of hypoxia. These effects result in suppression of bone formation and a general state of low bone turnover. More recently, however, we have demonstrated in pre-clinical mouse models, a very rapid but transient increase in osteoclast activity after exposure to spaceflight and clinically relevant radiation doses. Combined with long-term suppression of bone formation, this skeletal damage may cause long-term deficits. This review will present a broad set of literature outlining our current set knowledge of both clinical therapy and space exploration exposure to ionizing radiation. Additionally, we will discuss prevention of the initial osteoclast-mediated bone loss, the need to promote normal bone turnover and long-term quality of bone tissue, and our hypothesized molecular mechanisms.

6.
Gravit Space Biol Bull ; 25(1): 14-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22826632

RESUMO

Exposure to ionizing radiation may negatively impact skeletal integrity during extended spaceflight missions to the moon, Mars, or near-Earth asteroids. However, our understanding of the effects of radiation on bone is limited when compared to the effects of weightlessness. In addition to microgravity, astronauts will be exposed to space radiation from solar and cosmic sources. Historically, radiation exposure has been shown to damage both osteoblast precursors and local vasculature within the irradiated volume. The resulting suppression of bone formation and a general state of low bone-turnover is thought to be the primary contributor to bone loss and eventual fracture. Recent investigations using mouse models have identified a rapid, but transient, increase in osteoclast activity immediately after irradiation with both spaceflight and clinically-relevant radiation qualities and doses. Together with a chronic suppression of bone formation after radiation exposure, this acute skeletal damage may contribute to long-term deterioration of bone quality, potentially increasing fracture risk. Direct evidence for the damaging effects of radiation on human bone are primarily demonstrated by the increased incidence of fractures at sites that absorb high doses of radiation during cancer therapy: exposures are considerably higher than what could be expected during spaceflight. However, both the rapidity of bone damage and the chronic nature of the changes appear similar between exposure scenarios. This review will outline our current knowledge of space and clinical exploration exposure to ionizing radiation on skeletal health.

7.
Int Tinnitus J ; 16(2): 168-73, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22249877

RESUMO

BACKGROUND: Recent studies in noise-induced and idiopathic sensorineural hearing loss have suggested that magnesium supplementation may lessen both hearing loss and the severity of tinnitus in patients. Further epidemiological evidence indicates that all age groups of Americans fall short of the recommended daily allowance for magnesium by 100 mg daily. PURPOSE: The purpose of this study was to examine any potential benefit in lessening the severity of tinnitus in patients taking supplemental magnesium. RESEARCH DESIGN: The study was a single-arm, open-label, before-and-after study of oral magnesium (532 mg per day) in 26 patients for 3 months. Tinnitus severity was evaluated and recorded daily by the patient using the Tinnitus Distress Rating (TDR) scale of 0 (no tinnitus) to 10 (worst possible tinnitus). The Tinnitus Handicap Inventory (THI) was administered before and at the end of the study, and scores were converted to the grades of the 5-item Tinnitus Severity Scale (TSS). The purpose of this phase 2 study was to investigate whether the treatment was effective at all, and, as such, a placebo control was not performed. All data were collected at Mayo Clinic in Scottsdale, Arizona, between March 6 and December 10, 2008. STUDY SAMPLE: Patients with moderate to very severe tinnitus (TDR score of 3 through 8). INTERVENTION: Daily magnesium supplementation, 532 mg; patient completion of the THI; and daily self-report of TDR. DATA COLLECTION AND ANALYSIS: The main outcome measures were mean TDR scale scores and THI scores as converted to TSS grades. The primary analysis was done on the basis of intention to treat. RESULTS: Twenty-six patients were enrolled; 19 completed the study. The extent of handicap, as measured by THI/TSS, for subjects with slight or greater impairment was significantly decreased (P=.03). Patients who ranked slight or greater on the THI/TSS before intervention showed a significant decrease in the severity of their tinnitus at post-testing (P=.008). CONCLUSION: The results suggest that magnesium may have a beneficial effect on perception of tinnitus-related handicap when scored with the THI.


Assuntos
Deficiência de Magnésio/complicações , Deficiência de Magnésio/tratamento farmacológico , Magnésio/administração & dosagem , Zumbido/tratamento farmacológico , Zumbido/etiologia , Adulto , Idoso , Avaliação da Deficiência , Feminino , Seguimentos , Humanos , Magnésio/efeitos adversos , Deficiência de Magnésio/psicologia , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Índice de Gravidade de Doença , Inquéritos e Questionários , Zumbido/psicologia , Resultado do Tratamento
8.
Life Sci Space Res (Amst) ; 26: 140-148, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32718680

RESUMO

Visual illusions from astronauts in space have been reported to be associated with the passage of high energy charged particles through visual structures (retina, optic nerve, brain). Similar effects have also been reported by patients under proton and heavy ion therapies. This prompted us to investigate whether protons at the Loma Linda University Proton Therapy and Research Center (PTRC) may also affect other sensory systems beside evoking similar perceptions on the visual system. A retrospective review of proton radiotherapy patient records at PTRC identified 29 sensory reports from 19 patients who spontaneously reported visual, olfactory, auditory and gustatory illusions during treatment. Our results suggest that protons can evoke neuronal responses sufficient to elicit conscious sensory illusion experiences, in four senses (auditory, taste, smell, and visual) analogous to those from normal sensory inputs. The regions of the brain receiving the highest doses corresponded with the anatomical structures associated with each type of illusion. Our findings suggest that more detailed queries about sensory illusions during proton therapy are warranted, possibly integrated with quantitative effect descriptions (such as electroencephalography) and can provide additional physiological basis for understanding the effects of protons on central nervous system tissues, needed for radiation risk assessment in advance of deep space human exploration.


Assuntos
Encéfalo/fisiologia , Ilusões/fisiologia , Terapia com Prótons/efeitos adversos , Adolescente , Adulto , Estudos de Coortes , Feminino , Humanos , Ilusões/psicologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
9.
Radiat Res ; 193(3): 223-235, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32011211

RESUMO

This study has established the impact that 1-15 cGy 600 MeV/n 28Si radiation had on cognitive flexibility performance, glutamatergic synaptic transmission and plasticity in the prelimbic area (PrL) of the medial prefrontal cortex (mPFC) of ∼10-month-old (at the time of irradiation) male Wistar rats. Exposure to 1 cGy 600 MeV/n 28Si ions resulted in significantly impaired performance in the simple (SD) and compound discrimination (CD) stages of the attentional set shifting (ATSET) task. However, there was a pronounced non-linear dose response for cognitive impairment. Should similar effects occur in astronauts, the impairment of SD performance would result in a decreased ability to identify and learn the "rules" required to respond to new tasks/situations, while the impaired CD performance would result in a decreased ability to identify and maintain focus on relevant aspects of the task being conducted. The irradiated rats were also screened for performance in a task for unconstrained cognitive flexibility (UCFlex), often referred to as creative problem solving. Exposure to 1, 5 and 10 cGy resulted in a significant reduction in UCFlex performance, in an apparent all-or-none responsive manner. Importantly, performance in the ATSET test was not indicative of UCFlex performance. From a risk assessment perspective, these findings suggest that a value based on a single behavioral end point may not fully represent the cognitive deficits induced by space radiation, even within the cognitive flexibility domain. After completion of the cognitive flexibility testing, in vitro electrophysiological assessments of glutamatergic synaptic transmission and plasticity were performed in slices of the PrL cortex of 10 cGy irradiated rats. Extracellular recordings of field excitatory postsynaptic potentials revealed that radiation significantly decreased long-term depression in layer L5. Patch-clamp whole cell recordings in pyramidal neurons of the L2-3 revealed reduced frequency of spontaneous excitatory postsynaptic currents indicating alterations in presynaptic glutamate release and impaired neuronal spiking (e.g., decreased action potential amplitudes) in irradiated neurons. However, there was no obvious correlation between magnitudes of these electrophysiological decrements and the cognitive performance status of the irradiated rats. These data suggest that while radiation-induced changes in synaptic plasticity in the PrL cortex may be associated with cognitive impairment, they are most likely not the sole determinant of the incidence and severity of such impairments.


Assuntos
Cognição/efeitos da radiação , Córtex Pré-Frontal/efeitos da radiação , Silício/administração & dosagem , Animais , Comportamento Animal/efeitos da radiação , Relação Dose-Resposta à Radiação , Masculino , Técnicas de Patch-Clamp , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Wistar
10.
Life Sci Space Res (Amst) ; 26: 62-68, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32718688

RESUMO

PURPOSE: Studies are required to determine whether exposures to radiation encountered during manned missions in deep space may have adverse effects on the cardiovascular system. Most of the prior studies on effects of simulated space radiation on the heart and vasculature have been performed in mouse models. To provide data from a second animal species, two studies were performed to assess effects of high-energy charged particle radiation on the heart and abdominal aorta in a rat model. MATERIALS AND METHODS: In study A, male Long Evans rats were exposed to whole-body protons (250 MeV, 0.5 Gy) or oxygen ions (16O, 600 MeV/n, 0.5 Gy), and ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 3, 5, 9 and 12 months after radiation, followed by tissue collection at 12 months. In study B, male Long Evans rats were exposed to 16O (1 GeV/n, 0.01-0.25 Gy), and hearts collected at 6 to 7 and 12 months for histology and western-blots. RESULTS: Both protons (250 MeV) and 16O (600 MeV/n) caused a decrease in left ventricular posterior wall thickness at 3-5 months, but did not change echocardiographic measures of cardiac function. In Pulsed-wave Doppler assessment of the abdominal aorta, an increase was seen in mean velocity, peak velocity, and velocity time integral at 12 months after 16O (600 MeV/n), suggesting a change in vascular function. There were no significant changes in histopathology or histological quantification of total collagens in heart or aorta. On the other hand, an increase was seen in a 75 kDa peptide of collagen type III in the left ventricle of rats exposed to protons (250 MeV) and 16O (600 MeV/n and 1 GeV/n), suggesting that radiation caused remodeling of existing collagens in the heart. 16O (600 MeV/n and 1 GeV/n) caused increases in left ventricular protein levels of immune cell markers CD2, CD4, CD8, and CD68. CONCLUSION: A single low dose of whole body protons or 16O in male Long Evans rats did not change cardiac function or induce gross pathological changes in the heart or aorta, but induced mild changes in vascular function and remodeling of existing collagens in the heart. Altogether, studies in prior mouse models and the current work in rats indicate minor changes in cardiac function and structure after a low dose of single-ion radiation.


Assuntos
Aorta Abdominal/efeitos da radiação , Coração/efeitos da radiação , Oxigênio/efeitos adversos , Prótons/efeitos adversos , Animais , Aorta Abdominal/anatomia & histologia , Aorta Abdominal/fisiologia , Coração/anatomia & histologia , Coração/fisiologia , Íons/efeitos adversos , Masculino , Radiação Ionizante , Ratos , Ratos Long-Evans
11.
Radiat Res ; 172(1): 21-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19580504

RESUMO

On a mission to Mars, astronauts will be exposed to a complex mix of radiation from galactic cosmic rays. We have demonstrated a loss of bone mass from exposure to types of radiation relevant to space flight at doses of 1 and 2 Gy. The effects of space radiation on skeletal muscle, however, have not been investigated. To evaluate the effect of simulated galactic cosmic radiation on muscle fiber area and bone volume, we examined mice from a study in which brains were exposed to collimated iron-ion radiation. The collimator transmitted a complex mix of charged secondary particles to bone and muscle tissue that represented a low-fidelity simulation of the space radiation environment. Measured radiation doses of uncollimated secondary particles were 0.47 Gy at the proximal humerus, 0.24-0.31 Gy at the midbelly of the triceps brachii, and 0.18 Gy at the proximal tibia. Compared to nonirradiated controls, the proximal humerus of irradiated mice had a lower trabecular bone volume fraction, lower trabecular thickness, greater cortical porosity, and lower polar moment of inertia. The tibia showed no differences in any bone parameter. The triceps brachii of irradiated mice had fewer small-diameter fibers and more fibers containing central nuclei. These results demonstrate a negative effect on the skeletal muscle and bone systems of simulated galactic cosmic rays at a dose and LET range relevant to a Mars exploration mission. The presence of evidence of muscle remodeling highlights the need for further study.


Assuntos
Densidade Óssea/efeitos da radiação , Radiação Cósmica/efeitos adversos , Úmero/efeitos da radiação , Fibras Musculares Esqueléticas/efeitos da radiação , Tíbia/efeitos da radiação , Animais , Peso Corporal/efeitos da radiação , Úmero/diagnóstico por imagem , Úmero/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Doses de Radiação , Tíbia/diagnóstico por imagem , Tíbia/patologia , Microtomografia por Raio-X
12.
Life Sci Space Res (Amst) ; 20: 72-84, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30797436

RESUMO

PURPOSE: Astronauts traveling beyond low-Earth orbit will be exposed to high linear-energy transfer charged particles. Because there is concern about the adverse effects of space radiation on the cardiovascular system, this study assessed cardiac function and structure and immune cell infiltration in a mouse model of charged-particle irradiation. MATERIALS AND METHODS: Male C57BL/6 J mice were exposed to oxygen ions (16O, 600 MeV/n at 0.25-0.26 Gy/min to a total dose of 0, 0.05, 0.1, 0.25, or 1 Gy), protons (150 MeV, 0.35-0.55 Gy/min to 0, 0.5, or 1 Gy), or protons (150 MeV, 0.5 Gy) followed by 16O (600 MeV/n, 0.1 Gy). Separate groups of mice received 137Cs γ-rays (1 Gy/min to 0, 0.5, 1, or 3 Gy) as a reference. Cardiac function and blood velocity were measured with ultrasonography at 3, 5, 7, and 9 months after irradiation. At 2 weeks, 3 months, and 9 months, cardiac tissue was collected to assess apoptosis, tissue remodeling, and markers of immune cells. RESULTS: Ejection fraction and fractional shortening decreased at 3 and 7 months after 16O. These parameters did not change in mice exposed to γ-rays, protons, or protons followed by 16O. Each of the radiation exposures caused only small increases in cleaved caspase-3 and numbers of apoptotic nuclei. Changes in the levels of α-smooth muscle cell actin and a 75-kDa peptide of collagen type III in the left ventricle suggested tissue remodeling, but there was no significant change in total collagen deposition at 2 weeks, 3 months, and 9 months. Increases in protein amounts of cluster of differentiation (CD)2, CD68, and CD45 as measured with immunoblots at 2 weeks, 3 months, and 9 months after exposure to protons or 16O alone suggested immune cell infiltration. For type III collagen, CD2 and CD68, the efficacy in inducing protein abundance of CD2, CD68, and CD45 was 16O > protons > γ-rays > protons followed by 16O. CONCLUSIONS: Low-dose, high-energy charged-particle irradiation caused mild changes in cardiac function and tissue remodeling in the mouse.


Assuntos
Biomarcadores/análise , Coração/fisiopatologia , Radioisótopos de Oxigênio/administração & dosagem , Prótons , Exposição à Radiação/análise , Animais , Apoptose , Coração/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Voo Espacial
13.
Radiat Res ; 169(5): 523-30, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18439042

RESUMO

Exposure to space radiation consisting of high-energy charged (56)Fe particles represents a significant health risk for astronauts. (56)Fe-particle radiation affects the synaptic plasticity of the hippocampus and alters its response to the experimental immunological stressor lipopolysaccharide (LPS). We previously showed in mice that 1 month after exposure to (56)Fe-particle radiation, the LPS-induced inhibition of hippocampal long-term potentiation (LTP) was significantly attenuated, resulting in seemingly normal LTP. In the current study, we investigated this phenomenon further at longer times postirradiation. We exposed mice to accelerated iron particles ((56)Fe; 600 MeV/nucleon; 1, 2, 4 Gy; brain only), and 1, 3, 6 or 12 months postirradiation we administered LPS. Four hours after the intraperitoneal LPS injection, we prepared hippocampal slices to measure synaptic excitability and plasticity between CA3-CA1 neurons. In unexposed mice, we confirmed that LPS inhibited LTP at all times. However, in mice exposed to 2 Gy, the LPS-induced LTP inhibition was attenuated and reversed to control values. Such reversal was evident at 1 and 3 months but not 6 and 12 months postirradiation. In addition, at 6 and 12 months postirradiation, we observed inhibition of population spike (PS) amplitudes at 4 Gy that correlated with decrements in dendritic potentials, suggesting synaptic damage. Our data show that (56)Fe-particle radiation affects the response of the hippocampus to an immunological stressor and that the alterations progress over time.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/efeitos da radiação , Ferro , Lipopolissacarídeos/farmacologia , Potenciação de Longa Duração/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Animais , Hipocampo/citologia , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/efeitos dos fármacos , Sinapses/efeitos da radiação
14.
Radiat Res ; 169(6): 626-32, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18494546

RESUMO

Exposure to heavy-ion radiation is considered a potential health risk in long-term space travel. In the central nervous system (CNS), loss of critical cellular components may lead to performance decrements that could ultimately compromise mission goals and long-term quality of life. Hippocampal-dependent cognitive impairments occur after exposure to ionizing radiation, and while the pathogenesis of this effect is not yet clear, it may involve the production of newly born neurons (neurogenesis) in the hippocampal dentate gyrus. We irradiated mice with 0.5-4 Gy of (56)Fe ions and 2 months later quantified neurogenesis and numbers of activated microglia as a measure of neuroinflammation in the dentate gyrus. Results showed that there were few changes after 0.5 Gy, but that there was a dose-related decrease in hippocampal neurogenesis and a dose-related increase in numbers of newly born activated microglia from 0.5-4.0 Gy. While those findings were similar to what was reported after X irradiation, there were also some differences, particularly in the response of newly born glia. Overall, this study showed that hippocampal neurogenesis was sensitive to relatively low doses of (56)Fe particles, and that those effects were associated with neuroinflammation. Whether these changes will result in functional impairments or if/how they can be managed are topics for further investigation.


Assuntos
Encéfalo/patologia , Hipocampo/metabolismo , Ferro/química , Animais , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Sistema Nervoso Central/efeitos da radiação , Relação Dose-Resposta à Radiação , Hipocampo/efeitos da radiação , Inflamação , Íons , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos da radiação , Neurônios/metabolismo , Fenótipo , Raios X
15.
Radiat Res ; 169(6): 607-14, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18494551

RESUMO

Astronauts on exploratory missions will experience a complex environment, including microgravity and radiation. While the deleterious effects of unloading on bone are well established, fewer studies have focused on the effects of radiation. We previously demonstrated that 2 Gy of ionizing radiation has deleterious effects on trabecular bone in mice 4 months after exposure. The present study investigated the skeletal response after total doses of proton radiation that astronauts may be exposed to during a solar particle event. We exposed mice to 0.5, 1 or 2 Gy of whole-body proton radiation and killed them humanely 117 days later. Tibiae and femora were analyzed using microcomputed tomography, mechanical testing, mineral composition and quantitative histomorphometry. Relative to control mice, mice exposed to 2 Gy had significant differences in trabecular bone volume fraction (-20%), trabecular separation (+11%), and trabecular volumetric bone mineral density (-19%). Exposure to 1 Gy radiation induced a nonsignificant trend in trabecular bone volume fraction (-13%), while exposure to 0.5 Gy resulted in no differences. No response was detected in cortical bone. Further analysis of the 1-Gy mice using synchrotron microCT revealed a significantly lower trabecular bone volume fraction (-13%) than in control mice. Trabecular bone loss 4 months after exposure to 1 Gy highlights the importance of further examination of how space radiation affects bone.


Assuntos
Osso e Ossos/efeitos da radiação , Fêmur/efeitos da radiação , Prótons , Tíbia/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Radiação Ionizante , Estresse Mecânico , Luz Solar , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Raios Ultravioleta
16.
Adv Space Res ; 42(12): 1889-1897, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19122806

RESUMO

Extended exposure to microgravity conditions results in significant bone loss. Coupled with radiation exposure, this phenomenon may place astronauts at a greater risk for mission-critical fractures. In a previous study, we identified a profound and prolonged loss of trabecular bone (29-39%) in mice following exposure to an acute, 2 Gy dose of radiation simulating both solar and cosmic sources. However, because skeletal strength depends on trabecular and cortical bone, accurate assessment of strength requires analysis of both bone compartments. The objective of the present study was to examine various properties of cortical bone in mice following exposure to multiple types of spaceflight-relevant radiation. Nine-week old, female C57BL/6 mice were sacrificed 110 days after exposure to a single, whole body, 2 Gy dose of gamma, proton, carbon, or iron radiation. Femora were evaluated with biomechanical testing, microcomputed tomography, quantitative histomorphometry, percent mineral content, and micro-hardness analysis. Compared to non-irradiated controls, there were significant differences compared to carbon or iron radiation for only fracture force, medullary area and mineral content. A greater differential effect based on linear energy transfer (LET) level may be present: high-LET (carbon or iron) particle irradiation was associated with a decline in structural properties (maximum force, fracture force, medullary area, and cortical porosity) and mineral composition compared to low-LET radiation (gamma and proton). Bone loss following irradiation appears to be largely specific to trabecular bone and may indicate unique biological microenvironments and microdosimetry conditions. However, the limited time points examined and non-haversian skeletal structure of the mice employed highlight the need for further investigation.

17.
Radiat Res ; 168(4): 462-70, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17903042

RESUMO

Space radiation, including high-mass, high-Z, high-energy particles (HZE; e.g. (56)Fe), represents a significant health risk for astronauts, and the central nervous system (CNS) may be a vulnerable target. HZE-particle radiation may directly affect neuronal function, or during immunological challenge, it may alter immune system-to-CNS communication. To test these hypotheses, we exposed mice to accelerated iron particles ((56)Fe; 600 MeV/nucleon; 1, 2, 4 Gy; brain only) and 1 month later prepared hippocampal slices to measure the effects of radiation on neurotransmission and synaptic plasticity in CA1 neurons. In a model of immune system-to-CNS communication, these electrophysiological parameters were measured in irradiated mice additionally challenged with the peripheral immunological stressor lipopolysaccharide (LPS) injected intraperitoneally 4 h before the slice preparation. Exposure to (56)Fe particles alone increased dendritic excitability and inhibited plasticity. In control mice (0 Gy), LPS treatment also inhibited synaptic plasticity. Paradoxically, in mice exposed to 2 Gy, the LPS treatment restored synaptic plasticity to levels similar to those found in controls (0 Gy, no LPS). Our results indicate that HZE-particle radiation alters normal electrophysiological properties of the CNS and the hippocampal response to LPS.


Assuntos
Radiação Cósmica , Hipocampo/efeitos da radiação , Lipopolissacarídeos/farmacologia , Plasticidade Neuronal/efeitos da radiação , Sinapses/efeitos da radiação , Animais , Ferro/farmacologia , Potenciação de Longa Duração/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
PLoS One ; 12(11): e0186168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29186131

RESUMO

Space radiation represents a significant health risk for astronauts. Ground-based animal studies indicate that space radiation affects neuronal functions such as excitability, synaptic transmission, and plasticity, and it may accelerate the onset of Alzheimer's disease (AD). Although protons represent the main constituent in the space radiation spectrum, their effects on AD-related pathology have not been tested. We irradiated 3 month-old APP/PSEN1 transgenic (TG) and wild type (WT) mice with protons (150 MeV; 0.1-1.0 Gy; whole body) and evaluated functional and biochemical hallmarks of AD. We performed behavioral tests in the water maze (WM) before irradiation and in the WM and Barnes maze at 3 and 6 months post-irradiation to evaluate spatial learning and memory. We also performed electrophysiological recordings in vitro in hippocampal slices prepared 6 and 9 months post-irradiation to evaluate excitatory synaptic transmission and plasticity. Next, we evaluated amyloid ß (Aß) deposition in the contralateral hippocampus and adjacent cortex using immunohistochemistry. In cortical homogenates, we analyzed the levels of the presynaptic marker synaptophysin by Western blotting and measured pro-inflammatory cytokine levels (TNFα, IL-1ß, IL-6, CXCL10 and CCL2) by bead-based multiplex assay. TG mice performed significantly worse than WT mice in the WM. Irradiation of TG mice did not affect their behavioral performance, but reduced the amplitudes of population spikes and inhibited paired-pulse facilitation in CA1 neurons. These electrophysiological alterations in the TG mice were qualitatively different from those observed in WT mice, in which irradiation increased excitability and synaptic efficacy. Irradiation increased Aß deposition in the cortex of TG mice without affecting cytokine levels and increased synaptophysin expression in WT mice (but not in the TG mice). Although irradiation with protons increased Aß deposition, the complex functional and biochemical results indicate that irradiation effects are not synergistic to AD pathology.


Assuntos
Doença de Alzheimer/patologia , Modelos Animais de Doenças , Prótons , Voo Espacial , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal/efeitos da radiação , Biomarcadores/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos da radiação , Citocinas/metabolismo , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Transgênicos , Sinaptofisina/metabolismo
19.
PLoS One ; 12(7): e0180594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678877

RESUMO

PURPOSE: Space travel is associated with an exposure to low-dose rate ionizing radiation and the microgravity environment, both of which may lead to impairments in cardiac function. We used a mouse model to determine short- and long-term cardiac effects to simulated microgravity (hindlimb unloading; HU), continuous low-dose rate γ-irradiation, or a combination of HU and low-dose rate γ-irradiation. METHODS: Cardiac tissue was obtained from female, C57BL/6J mice 7 days, 1 month, 4 months, and 9 months following the completion of a 21 day exposure to HU or a 21 day exposure to low-dose rate γ-irradiation (average dose rate of 0.01 cGy/h to a total of 0.04 Gy), or a 21 day simultaneous exposure to HU and low-dose rate γ-irradiation. Immunoblot analysis, rt-PCR, high-performance liquid chromatography, and histology were used to assess inflammatory cell infiltration, cardiac remodeling, oxidative stress, and the methylation potential of cardiac tissue in 3 to 6 animals per group. RESULTS: The combination of HU and γ-irradiation demonstrated the strongest increase in reduced to oxidized glutathione ratios 7 days and 1 month after treatment, but a difference was no longer apparent after 9 months. On the other hand, no significant changes in 4-hydroxynonenal adducts was seen in any of the groups, at the measured endpoints. While manganese superoxide dismutase protein levels decreased 9 months after low-dose γ-radiation, no changes were observed in expression of catalase or Nrf2, a transcription factor that determines the expression of several antioxidant enzymes, at the measured endpoints. Inflammatory marker, CD-2 protein content was significantly decreased in all groups 4 months after treatment. No significant differences were observed in α-smooth muscle cell actin protein content, collagen type III protein content or % total collagen. CONCLUSIONS: This study has provided the first and relatively broad analysis of small molecule and protein markers of oxidative stress, T-lymphocyte infiltration, and cardiac remodeling in response to HU with simultaneous exposure to low-dose rate γ-radiation. Results from the late observation time points suggest that the hearts had mostly recovered from these two experimental conditions. However, further research is needed with larger numbers of animals for a more robust statistical power to fully characterize the early and late effects of simulated microgravity combined with exposure to low-dose rate ionizing radiation on the heart.


Assuntos
Metilação de DNA/efeitos da radiação , Raios gama , Coração/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Simulação de Ausência de Peso , Animais , Antioxidantes/metabolismo , Colágeno/metabolismo , Relação Dose-Resposta à Radiação , Enzimas/metabolismo , Feminino , Coração/anatomia & histologia , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/enzimologia , Miocárdio/metabolismo
20.
Brain Struct Funct ; 222(5): 2345-2357, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27905022

RESUMO

In the not too distant future, humankind will embark on one of its greatest adventures, the travel to distant planets. However, deep space travel is associated with an inevitable exposure to radiation fields. Space-relevant doses of protons elicit persistent disruptions in cognition and neuronal structure. However, whether space-relevant irradiation alters neurotransmission is unknown. Within the hippocampus, a brain region crucial for cognition, perisomatic inhibitory control of pyramidal cells (PCs) is supplied by two distinct cell types, the cannabinoid type 1 receptor (CB1)-expressing basket cells (CB1BCs) and parvalbumin (PV)-expressing interneurons (PVINs). Mice subjected to low-dose proton irradiation were analyzed using electrophysiological, biochemical and imaging techniques months after exposure. In irradiated mice, GABA release from CB1BCs onto PCs was dramatically increased. This effect was abolished by CB1 blockade, indicating that irradiation decreased CB1-dependent tonic inhibition of GABA release. These alterations in GABA release were accompanied by decreased levels of the major CB1 ligand 2-arachidonoylglycerol. In contrast, GABA release from PVINs was unchanged, and the excitatory connectivity from PCs to the interneurons also underwent cell type-specific alterations. These results demonstrate that energetic charged particles at space-relevant low doses elicit surprisingly selective long-term plasticity of synaptic microcircuits in the hippocampus. The magnitude and persistent nature of these alterations in synaptic function are consistent with the observed perturbations in cognitive performance after irradiation, while the high specificity of these changes indicates that it may be possible to develop targeted therapeutic interventions to decrease the risk of adverse events during interplanetary travel.


Assuntos
Células Piramidais/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Hipocampo/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Parvalbuminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA