Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.100
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 181(3): 495-497, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32234519

RESUMO

This year's Canada Gairdner International Prize is shared by Rolf Kemler and Masatoshi Takeichi for the discovery of the cadherin family of Ca2+-dependent cell-cell adhesion proteins, which play essential roles in animal evolution, tissue development, and homeostasis, and are disrupted in human cancers.


Assuntos
Caderinas/metabolismo , Caderinas/fisiologia , Comunicação Celular/fisiologia , Animais , Distinções e Prêmios , Fenômenos Biofísicos , Canadá , Adesão Celular/fisiologia , História do Século XX , História do Século XXI , Homeostase/fisiologia , Humanos , Masculino
2.
Int J Hyperthermia ; 40(1): 2205066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106474

RESUMO

The mitochondria are central to skeletal muscle metabolic health. Impaired mitochondrial function is associated with various muscle pathologies, including insulin resistance and muscle atrophy. As a result, continuous efforts are made to find ways to improve mitochondrial health in the context of disuse and disease. While exercise is known to cause robust improvements in mitochondrial health, not all individuals are able to exercise. This creates a need for alternate interventions which elicit some of the same benefits as exercise. Passive heating (i.e., application of heat in the absence of muscle contractions) is one potential intervention which has been shown to increase mitochondrial enzyme content and activity, and to improve mitochondrial respiration. Associated with increases in mitochondrial content and/or function, passive heating can also improve insulin sensitivity in the context of type II diabetes and preserve muscle mass in the face of limb disuse. This area of research remains in its infancy, with many questions yet to be answered about how to maximize the benefits of passive heating and elucidate the mechanisms by which heat stress affects muscle mitochondria.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Mitocôndrias Musculares/metabolismo , Resposta ao Choque Térmico
3.
An Acad Bras Cienc ; 95(suppl 2): e20191075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055557

RESUMO

This study characterizes the diversity of Sisyridae in an area of riparian forest (21°36'47"S; 47°49'4"W) at the Estação Ecológica de Jataí, in the municipality of Luiz Antônio, State of São Paulo, Brazil. The geographic ranges of Climacia carpenteri Parfin & Gurney, 1956 and Sisyra panama Parfin & Gurney, 1956 are expanded to include the State of São Paulo.


Assuntos
Holometábolos , Himenópteros , Animais , Brasil , Insetos , Florestas
4.
PLoS Biol ; 17(7): e3000381, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31314751

RESUMO

The primary cilium is a central signaling hub in cell proliferation and differentiation and is built and disassembled every cell cycle in many animal cells. Disassembly is critically important, as misregulation or delay of cilia loss leads to cell cycle defects. The physical means by which cilia are lost are poorly understood but are thought to involve resorption of ciliary components into the cell body. To investigate cilium loss in mammalian cells, we used live-cell imaging to comprehensively characterize individual events. The predominant mode of cilium loss was rapid deciliation, in which the membrane and axoneme of the cilium was shed from the cell. Gradual resorption was also observed, as well as events in which a period of gradual resorption was followed by rapid deciliation. Deciliation resulted in intact shed cilia that could be recovered from culture medium and contained both membrane and axoneme proteins. We modulated levels of katanin and intracellular calcium, two putative regulators of deciliation, and found that excess katanin promotes cilia loss by deciliation, independently of calcium. Together, these results suggest that mammalian ciliary loss involves a tunable decision between deciliation and resorption.


Assuntos
Axonema/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cílios/fisiologia , Transdução de Sinais/fisiologia , Animais , Axonema/metabolismo , Cálcio/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular , Cílios/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Katanina/genética , Katanina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Microscopia de Fluorescência
5.
J Physiol ; 599(20): 4581-4596, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487346

RESUMO

Limb disuse has profound negative consequences on both vascular and skeletal muscle health. The purpose of this investigation was to determine whether repeated application of passive heat, applied to the knee extensor muscles, could mitigate the detrimental effects of limb disuse on vascular function. This was a randomized, single-blinded placebo controlled trial. Twenty-one healthy volunteers (10 women, 11 men) underwent 10 days of unilateral lower limb immobilization and were randomized to receive either a daily 2 h sham (Imm) or heat treatment (Imm+H) using pulsed shortwave diathermy. Vascular function was assessed with Doppler ultrasound of the femoral artery and the passive leg movement technique. Biopsies of the vastus lateralis were also collected before and after the intervention. In Imm, femoral artery diameter (FAD) and PLM-induced hyperaemia (HYP) were reduced by 7.3% and 34.3%, respectively. Changes in both FAD (4% decrease; P = 0.0006) and HYP (7.8% increase; P = 0.003) were significantly attenuated in Imm+H. Vastus lateralis capillary density was not altered in either group. Immobilization significantly decreased expression of vascular endothelial growth factor (P = 0.006) and Akt (P = 0.001), and increased expression of angiopoietin 2 (P = 0.0004) over time, with no differences found between groups. Immobilization also upregulated elements associated with remodelling of the extracellular matrix, including matrix metalloproteinase 2 (P = 0.0046) and fibronectin (P = 0.0163), with no differences found between groups. In conclusion, limb immobilization impairs vascular endothelial function, but daily muscle heating via diathermy is sufficient to counteract this adverse effect. These are the first data to indicate that passive muscle heating mitigates disuse-induced vascular dysfunction. KEY POINTS: Limb disuse can be unavoidable for many of reasons (i.e. injury, bed rest, post-surgery), and can have significant adverse consequences for muscular and vascular health. We tested the hypothesis that declines in vascular function that result from lower limb immobilization could be mitigated by application of passive heat therapy. This report shows that 10 days of limb immobilization significantly decreases resistance artery diameter and vascular function, and that application of passive heat to the knee extensor muscle group each day for 2 h per day is sufficient to attenuate these declines. Additionally, muscle biopsy analyses showed that 10 days of heat therapy does not alter capillary density of the muscle, but upregulates multiple factors indicative of a vascular remodelling response. Our data demonstrate the utility of passive heat as a therapeutic tool to mitigate losses in lower limb vascular function that occur from disuse.


Assuntos
Calefação , Metaloproteinase 2 da Matriz , Feminino , Humanos , Imobilização , Masculino , Força Muscular , Músculo Esquelético , Atrofia Muscular/patologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/patologia , Fator A de Crescimento do Endotélio Vascular
6.
Inorg Chem ; 60(20): 15242-15252, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34569783

RESUMO

Using a redox-active dioxophenoxazine ligand, DOPO (DOPO = 2,4,6,8-tetra-tert-butyl-1-oxo-1H-phenoxazine-9-olate), a family of actinide (U, Th, Np, and Pu) and Hf tris(ligand) coordination compounds was synthesized. The full characterization of these species using 1H NMR spectroscopy, electronic absorption spectroscopy, SQUID magnetometry, and X-ray crystallography showed that these compounds are analogous and exist in the form M(DOPOq)2(DOPOsq), where two ligands are of the oxidized quinone form (DOPOq) and the third is of the reduced semiquinone (DOPOsq) form. The electronic structures of these complexes were further investigated using CASSCF calculations, which revealed electronic structures consistent with metals in the +4 formal oxidation state and one unpaired electron localized on one ligand in each complex. Furthermore, f orbitals of the early actinides show a sizable bonding overlap with the ligand 2p orbitals. Notably, this is the first example of a plutonium-ligand radical species and a rare example of magnetic data being recorded for a homogeneous plutonium coordination complex.

7.
An Acad Bras Cienc ; 93(2): e20190801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34259792

RESUMO

In this study, the Gasteruptiidae (Hymenoptera, Evanioidea) collected in three environments at the Department of Rocha, in Eastern Uruguay, were documented based on a survey carried out with Malaise traps between December 2014 and December 2016. During the samplings, four species of Gasteruption Latreille, 1796 were captured, being 14 females and three males of Gasteruption brachychaetun Schrottky, 1906; eight females and five males of Gasteruption brasiliense (Blanchard, 1840); one female of Gasteruption helenae Macedo, 2011 and one female of Gasteruption brandaoi Macedo, 2011. Gasteruption brachychaetun, G. helenae and G. brandaoi are recorded by the first time from Uruguay.


Assuntos
Himenópteros , Animais , Feminino , Masculino , Manejo de Espécimes , Inquéritos e Questionários , Uruguai
8.
Dev Biol ; 447(2): 170-181, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30629955

RESUMO

The cadherin-catenin complex is a conserved, calcium-dependent cell-cell adhesion module that is necessary for normal development and the maintenance of tissue integrity in bilaterian animals. Despite longstanding evidence of a deep ancestry of calcium-dependent cell adhesion in animals, the requirement of the cadherin-catenin complex to coordinate cell-cell adhesion has not been tested directly in a non-bilaterian organism. Here, we provide the first analysis of classical cadherins and catenins in the Starlet Sea Anemone, Nematostella vectensis. Gene expression, protein localization, siRNA-mediated knockdown of α-catenin, and calcium-dependent cell aggregation assays provide evidence that a bonafide cadherin-catenin complex is present in the early embryo, and that α-catenin is required for normal embryonic development and the formation of cell-cell adhesions between cells dissociated from whole embryos. Together these results support the hypothesis that the cadherin-catenin complex was likely a complete and functional cell-cell adhesion module in the last common cnidarian-bilaterian ancestor. SUMMARY STATEMENT: Embryonic manipulations and ex vivo adhesion assays in the sea anemone, Nematostella vectensis, indicate that the necessity of the cadherin-catenin complex for mediating cell-cell adhesion is deeply conserved in animal evolution.


Assuntos
Caderinas/metabolismo , Cateninas/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Anêmonas-do-Mar/embriologia , Animais , Adesão Celular/fisiologia , Embrião não Mamífero/citologia , Anêmonas-do-Mar/citologia
9.
Nat Rev Mol Cell Biol ; 9(11): 833-45, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18946473

RESUMO

The polarized distribution of functions in polarized cells requires the coordinated interaction of three machineries that modify the basic mechanisms of intracellular protein trafficking and distribution. First, intrinsic protein-sorting signals and cellular decoding machineries regulate protein trafficking to plasma membrane domains; second, intracellular signalling complexes define the plasma membrane domains to which proteins are delivered; and third, proteins that are involved in cell-cell and cell-substrate adhesion orientate the three-dimensional distribution of intracellular signalling complexes and, accordingly, the direction of membrane traffic. The integration of these mechanisms into a complex and dynamic network is crucial for normal tissue function and is often defective in disease states.


Assuntos
Polaridade Celular , Transporte Proteico , Animais , Membrana Celular/química , Citoesqueleto/metabolismo , Humanos , Organogênese , Patologia , Proteínas/análise , Proteínas/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-34413578

RESUMO

Mechanical forces play important roles in the biological function of cells and tissues. While numerous studies have probed the force response of cells and measured cell-generated forces, they have primarily focused on tensile, but not shear forces. Here, we describe the design, fabrication, and application of a silicon micromachined device that is capable of independently applying and sensing both tensile and shear forces in an epithelial cell monolayer. We integrated the device with an upright microscope to enable live cell brightfield and fluorescent imaging of cells over many hours following mechanical perturbation. Using devices of increasing stiffness and the same displacement input, we demonstrate that epithelia exhibit concomitant higher maximum resistive tensile forces and quicker force relaxation. In addition, we characterized the force response of the epithelium to cyclic shear loading. While the maximum resistive forces of epithelia under cyclic shear perturbation remained unchanged between cycles, cyclic loading led to faster relaxation of the resistive forces. The device presented here can be applied to studying the force response of other monolayer-forming cell types and is compatible with pharmacological perturbation of cell structures and functions.

11.
Proc Natl Acad Sci U S A ; 114(29): E5835-E5844, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28674019

RESUMO

Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.


Assuntos
Caderinas/metabolismo , Adesão Celular/fisiologia , Resinas Acrílicas/química , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Antígenos CD , Caderinas/genética , Colágeno/química , Colágeno/metabolismo , Cães , Módulo de Elasticidade , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Microscopia de Força Atômica/métodos , Pseudópodes/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(29): E5845-E5853, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28674014

RESUMO

Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin-Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell-cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.


Assuntos
Caderinas/metabolismo , Células Epiteliais/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Adesão Celular/fisiologia , Divisão Celular , Forma Celular , Cães , Células Epiteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células Madin Darby de Rim Canino , Mecanotransdução Celular , Fuso Acromático/metabolismo , Estresse Mecânico , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
13.
An Acad Bras Cienc ; 92(suppl 2): e20181073, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146274

RESUMO

In this study, the Gasteruptiidae species found at the Estação Ecológica de Jataí (EEJ), in Luiz Antonio, São Paulo, Brazil, were documented, based on a survey carried out with Malaise, Moericke and light traps that lasted for three years, between January 2007 and December 2009. During the samplings at EEJ, 13 female specimens of Gasteruption Latreille, 1796 were captured: six of G. bispinosum Kieffer, 1904, six of G. brasiliense (Blanchard, 1840) and a single specimen of G. helenae Macedo, 2011 that is the first record for São Paulo state.


Assuntos
Himenópteros , Animais , Brasil , Meio Ambiente , Feminino
14.
J Biol Chem ; 293(30): 11674-11686, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29880641

RESUMO

The evolution of cell-adhesion mechanisms in animals facilitated the assembly of organized multicellular tissues. Studies in traditional animal models have revealed two predominant adhesion structures, the adherens junction (AJ) and focal adhesions (FAs), which are involved in the attachment of neighboring cells to each other and to the secreted extracellular matrix (ECM), respectively. The AJ (containing cadherins and catenins) and FAs (comprising integrins, talin, and paxillin) differ in protein composition, but both junctions contain the actin-binding protein vinculin. The near ubiquity of these structures in animals suggests that AJ and FAs evolved early, possibly coincident with multicellularity. However, a challenge to this perspective is that previous studies of sponges-a divergent animal lineage-indicate that their tissues are organized primarily by an alternative, sponge-specific cell-adhesion mechanism called "aggregation factor." In this study, we examined the structure, biochemical properties, and tissue localization of a vinculin ortholog in the sponge Oscarella pearsei (Op). Our results indicate that Op vinculin localizes to both cell-cell and cell-ECM contacts and has biochemical and structural properties similar to those of vertebrate vinculin. We propose that Op vinculin played a role in cell adhesion and tissue organization in the last common ancestor of sponges and other animals. These findings provide compelling evidence that sponge tissues are indeed organized like epithelia in other animals and support the notion that AJ- and FA-like structures extend to the earliest periods of animal evolution.


Assuntos
Poríferos/citologia , Vinculina/metabolismo , Actinas/análise , Actinas/metabolismo , Animais , Adesão Celular , Adesões Focais/metabolismo , Modelos Moleculares , Poríferos/metabolismo , Poríferos/ultraestrutura , Ligação Proteica , Conformação Proteica , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Talina/análise , Talina/metabolismo , Vinculina/análise
15.
Anal Chem ; 91(13): 8476-8483, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31148451

RESUMO

We present an extension of the well-known slopes method for characterization of the in-plane thermal diffusivity of semitransparent polymer films. We introduce a theoretical model which considers heat losses due to convection and radiation mechanisms, as well as semitransparency of the material to the exciting laser heat source (visible range) and multiple reflections at the film surfaces. Most importantly, a potential semitransparency of the material in the IR detection range is also considered. We prove by numerical simulations and by an asymptotic expansion of the surface temperature that the slopes method is also valid for any semitransparent film in the thermally thin regime. Measurements of the in-plane thermal diffusivity performed on semitransparent polymer films covering a wide range of absorption coefficients (to the exciting wavelength and in the IR detection range of our IR camera) validate our theoretical findings.

16.
Ecology ; 100(2): e02558, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30411784

RESUMO

Asymmetric interactions among conspecifics can have diverse effects on population dynamics including stabilization, generation of cycles, and induction of chaotic fluctuations. A difficult challenge, however, is establishing the link between the impact of asymmetric interactions on life history and the consequences for population dynamics. The smaller tea tortrix, Adoxophyes honmai, is a good example. Larval instars differ dramatically in size and have a tendency for cannibalism, which suggests the potential for strong asymmetric interactions among instars. Yet whether these asymmetries have any role in generating the distinct single-generation cycles observed in the field and laboratory is unclear. Here we report on the development of a new experimental approach to characterize the impact of asymmetric interactions on life history that can be directly embedded into stage-structured population models. The experiments use donor-replacement protocols in which focal individuals are challenged to complete their life cycles in competitive environments where the instar and density of the competitors are held constant. The experimentally derived interaction surface contains all the information about stage-specific interactions and provides a straightforward framework for evaluating alternative ways of abstracting the interactions into traditional models of asymmetric competition. Working with the smaller tea tortrix, we found strong evidence of asymmetric interactions and identified critical "tipping points" in the competitive environment that strongly affected survival but not development. We incorporated the experimentally derived interaction surface into a stage-structured population model and found that despite the strong impact that asymmetric interactions have on tea tortrix life history, they do not scale-up to impact the predicted asymptotic population dynamics. Comparing these dynamics with two abstracted models of stage-structured interactions revealed that while the quantitative details of the emergent dynamics depends on the shape of the interaction surface, the qualitative features, such as the emergence of single-generation cycles and rapid synchronization of development among individuals, are pleasingly robust.


Assuntos
Mariposas , Animais , Canibalismo , Modelos Biológicos , Dinâmica Populacional , Chá
17.
Biochem J ; 475(14): 2329-2353, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064990

RESUMO

The cilium, once considered a vestigial structure, is a conserved, microtubule-based organelle critical for transducing extracellular chemical and mechanical signals that control cell polarity, differentiation, and proliferation. The cilium undergoes cycles of assembly and disassembly that are controlled by complex inter-relationships with the cytoskeleton. Microtubules form the core of the cilium, the axoneme, and are regulated by post-translational modifications, associated proteins, and microtubule dynamics. Although actin and septin cytoskeletons are not major components of the axoneme, they also regulate cilium organization and assembly state. Here, we discuss recent advances on how these different cytoskeletal systems- affect cilium function, structure, and organization.


Assuntos
Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Cílios/metabolismo , Microtúbulos/metabolismo , Animais , Cílios/genética , Humanos , Microtúbulos/genética
18.
Proc Natl Acad Sci U S A ; 113(51): 14698-14703, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930308

RESUMO

Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.


Assuntos
Materiais Biomiméticos , Caderinas/metabolismo , Epitélio/fisiologia , Cicatrização , Animais , Adesão Celular , Movimento Celular , Cães , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Imageamento Tridimensional , Integrinas/metabolismo , Junções Intercelulares/metabolismo , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Modelos Biológicos
19.
Hum Factors ; 61(2): 225-242, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30216088

RESUMO

OBJECTIVE: To determine whether perceived time progression (PTP) moderates participants' negative reactions to vigilance tasks. BACKGROUND: Vigilance tasks are rated by participants to be unenjoyable and as having high levels of workload and stress. Based on the adage, "You are having fun when time flies," we tested the possibility that accelerating PTP might reduce these negative experiences. METHOD: Two studies were performed, involving a long 30-min and a short 12-min vigil. We manipulated participants' PTP by creating a mismatch between their expectations about how long they would perform the task and the actual time that they were engaged. RESULTS: PTP was significantly faster for participants who were led to expect that the vigilance task would last longer than it did relative to those led to expect that task duration would be shorter than it actually was and for controls for whom task duration was equal to the expected duration. However, accelerating PTP had no effect in either experiment on undesirable reactions to the vigilance tasks. Participants uniformly rated both tasks as unenjoyable, as having a high level of workload, and as stressful. Apparently, vigilance isn't fun even when time flies. CONCLUSION: Our findings greatly underscore the depth to which negative subjective reactions are embedded in the nature of vigilance tasks and therefore that these tasks can have potentially serious costs to participants in terms of health, safety, and productivity. APPLICATION: These costs must be considered at the operational level.


Assuntos
Nível de Alerta/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Detecção de Sinal Psicológico/fisiologia , Estresse Psicológico/fisiopatologia , Percepção do Tempo/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
20.
J Biol Chem ; 292(17): 7077-7086, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28298447

RESUMO

Intercellular epithelial junctions formed by classical cadherins, ß-catenin, and the actin-binding protein α-catenin link the actin cytoskeletons of adjacent cells into a structural continuum. These assemblies transmit forces through the tissue and respond to intracellular and extracellular signals. However, the mechanisms of junctional assembly and regulation are poorly understood. Studies of cadherin-catenin assembly in a number of metazoans have revealed both similarities and unexpected differences in the biochemical properties of the cadherin·catenin complex that likely reflect the developmental and environmental requirements of different tissues and organisms. Here, we report the structural and biochemical characterization of HMP-1, the Caenorhabditis elegans α-catenin homolog, and compare it with mammalian α-catenin. HMP-1 shares overall similarity in structure and actin-binding properties, but displayed differences in conformational flexibility and allosteric regulation from mammalian α-catenin. HMP-1 bound filamentous actin with an affinity in the single micromolar range, even when complexed with the ß-catenin homolog HMP-2 or when present in a complex of HMP-2 and the cadherin homolog HMR-1, indicating that HMP-1 binding to F-actin is not allosterically regulated by the HMP-2·HMR-1 complex. The middle (i.e. M) domain of HMP-1 appeared to be less conformationally flexible than mammalian α-catenin, which may underlie the dampened effect of HMP-2 binding on HMP-1 actin-binding activity compared with that of the mammalian homolog. In conclusion, our data indicate that HMP-1 constitutively binds ß-catenin and F-actin, and although the overall structure and function of HMP-1 and related α-catenins are similar, the vertebrate proteins appear to be under more complex conformational regulation.


Assuntos
Actinas/química , Caderinas/química , Proteínas de Caenorhabditis elegans/química , Proteínas do Citoesqueleto/química , alfa Catenina/química , beta Catenina/química , Sítio Alostérico , Animais , Caenorhabditis elegans , Adesão Celular , Cristalografia por Raios X , Glutationa Transferase/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Coelhos , Relação Estrutura-Atividade , Vinculina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA