Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 163(1): 230-45, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26365490

RESUMO

Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing. RNA-seq analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a reinforces transcriptional repression via its interaction with members of the NuRD complex (Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which ESCs repress retroviruses within the genome.


Assuntos
Células-Tronco Embrionárias/virologia , Retrovirus Endógenos/genética , Provírus/genética , Animais , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Células-Tronco de Carcinoma Embrionário/virologia , Epigênese Genética , Camundongos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
2.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37325974

RESUMO

Polyamines promote cellular proliferation. Their levels are controlled by ornithine decarboxylase antizyme 1 (Az1, encoded by OAZ1), through the proteasome-mediated, ubiquitin-independent degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis. Az1-mediated degradation of other substrates such as cyclin D1 (CCND1), DNp73 (TP73) or Mps1 regulates cell growth and centrosome amplification, and the currently known six Az1 substrates are all linked with tumorigenesis. To understand whether Az1-mediated protein degradation might play a role in regulating other cellular processes associated with tumorigenesis, we employed quantitative proteomics to identify novel Az1 substrates. Here, we describe the identification of LIM domain and actin-binding protein 1 (LIMA1), also known as epithelial protein lost in neoplasm (EPLIN), as a new Az1 target. Interestingly, between the two EPLIN isoforms (α and ß), only EPLIN-ß is a substrate of Az1. The interaction between EPLIN-ß and Az1 appears to be indirect, and EPLIN-ß is degraded by Az1 in a ubiquitination-independent manner. Az1 absence leads to elevated EPLIN-ß levels, causing enhanced cellular migration. Consistently, higher LIMA1 levels correlate with poorer overall survival of colorectal cancer patients. Overall, this study identifies EPLIN-ß as a novel Az1 substrate regulating cellular migration.


Assuntos
Ornitina Descarboxilase , Ubiquitina , Humanos , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/química , Ornitina Descarboxilase/metabolismo , Ubiquitina/metabolismo , Isoformas de Proteínas , Carcinogênese , Proteínas do Citoesqueleto
3.
Genes Dev ; 29(12): 1298-315, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26080815

RESUMO

Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.


Assuntos
Neoplasias da Mama/fisiopatologia , Montagem e Desmontagem da Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Células HT29 , Humanos , Células MCF-7 , Mutação/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/metabolismo
4.
J Lipid Res ; 63(1): 100147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752805

RESUMO

The myelin sheath, which is wrapped around axons, is a lipid-enriched structure produced by mature oligodendrocytes. Disruption of the myelin sheath is observed in several neurological diseases, such as multiple sclerosis. A crucial component of myelin is sphingomyelin, levels of which can be increased by ABCA8, a member of the ATP-binding cassette transporter family. ABCA8 is highly expressed in the cerebellum, specifically in oligodendroglia. However, whether ABCA8 plays a role in myelination and mechanisms that would underlie this role remain unknown. Here, we found that the absence of Abca8b, a mouse ortholog of ABCA8, led to decreased numbers of cerebellar oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in mice. We show that in oligodendrocytes, ABCA8 interacts with chondroitin sulfate proteoglycan 4 (CSPG4), a molecule essential for OPC proliferation, migration, and myelination. In the absence of Abca8b, localization of CSPG4 to the plasma membrane was decreased, contributing to reduced cerebellar CSPG4 expression. Cerebellar CSPG4+ OPCs were also diminished, leading to decreased mature myelinating oligodendrocyte numbers and cerebellar myelination levels in Abca8b-/- mice. In addition, electron microscopy analyses showed that the number of nonmyelinated cerebellar axons was increased, whereas cerebellar myelin thickness (g-ratio), myelin sheath periodicity, and axonal diameter were all decreased, indicative of disordered myelin ultrastructure. In line with disrupted cerebellar myelination, Abca8b-/- mice showed lower cerebellar conduction velocity and disturbed locomotion. In summary, ABCA8 modulates cerebellar myelination, in part through functional regulation of the ABCA8-interacting protein CSPG4. Our findings suggest that ABCA8 disruption may contribute to the pathophysiology of myelin disorders.


Assuntos
Células Precursoras de Oligodendrócitos
5.
J Proteome Res ; 21(8): 1948-1960, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35838755

RESUMO

Englerin A (EA) is a small-molecule natural product with selective cytotoxicity against renal cancer cells. EA has been shown to induce apoptosis and cell death through cell-cycle arrest and/or insulin signaling pathways. However, its biological mode of action or targets in renal cancer remains enigmatic. In this study, we employed advanced mass spectrometry-based phosphoproteomics approaches to identify EA's functional roles in renal cancer. We identified 10,940 phosphorylation sites, of which 706 sites exhibited EA-dependent phosphorylation changes. Integrated analysis of motifs and interaction networks suggested activation of stress-activated kinases including p38 upon EA treatment. Of note, a downstream target of p38, Hsp27, was found to be hyperphosphorylated on multiple sites upon EA treatment. Among these, a novel site Ser65 on Hsp27, which was further validated by targeted proteomics, was shown to be crucial for EA-induced cytotoxicity in renal cancer cells. Taken together, these data reveal the complex signaling cascade that is induced upon EA treatment and importantly provide insights into its effects on downstream molecular signaling.


Assuntos
Proteínas de Choque Térmico HSP27 , Neoplasias Renais , Apoptose , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacologia , Humanos , Neoplasias Renais/tratamento farmacológico , Fosforilação , Sesquiterpenos de Guaiano/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia
6.
RNA ; 24(6): 803-814, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29572260

RESUMO

The four dengue viruses (DENV1-4) are rapidly reemerging infectious RNA viruses. These positive-strand viral genomes contain structured 3' untranslated regions (UTRs) that interact with various host RNA binding proteins (RBPs). These RBPs are functionally important in viral replication, pathogenesis, and defense against host immune mechanisms. Here, we combined RNA chromatography and quantitative mass spectrometry to identify proteins interacting with DENV1-4 3' UTRs. As expected, RBPs displayed distinct binding specificity. Among them, we focused on quaking (QKI) because of its preference for the DENV4 3' UTR (DENV-4/SG/06K2270DK1/2005). RNA immunoprecipitation experiments demonstrated that QKI interacted with DENV4 genomes in infected cells. Moreover, QKI depletion enhanced infectious particle production of DENV4. On the contrary, QKI did not interact with DENV2 3' UTR, and DENV2 replication was not affected consistently by QKI depletion. Next, we mapped the QKI interaction site and identified a QKI response element (QRE) in DENV4 3' UTR. Interestingly, removal of QRE from DENV4 3' UTR abolished this interaction and increased DENV4 viral particle production. Introduction of the QRE to DENV2 3' UTR led to QKI binding and reduced DENV2 infectious particle production. Finally, reporter assays suggest that QKI reduced translation efficiency of viral RNA. Our work describes a novel function of QKI in restricting viral replication.


Assuntos
Regiões 3' não Traduzidas , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/prevenção & controle , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/efeitos dos fármacos , Dengue/genética , Dengue/virologia , Genoma Viral , Células HEK293 , Humanos , Proteínas de Ligação a RNA/genética
7.
Nucleic Acids Res ; 46(22): 11659-11670, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30412255

RESUMO

N6-methyldeoxyadenosine (6mA) is a well-characterized DNA modification in prokaryotes but reports on its presence and function in mammals have been controversial. To address this issue, we established the capacity of 6mA-Crosslinking-Exonuclease-sequencing (6mACE-seq) to detect genome-wide 6mA at single-nucleotide-resolution, demonstrating this by accurately mapping 6mA in synthesized DNA and bacterial genomes. Using 6mACE-seq, we generated a human-genome-wide 6mA map that accurately reproduced known 6mA enrichment at active retrotransposons and revealed mitochondrial chromosome-wide 6mA clusters asymmetrically enriched on the heavy-strand. We identified a novel putative 6mA-binding protein in single-stranded DNA-binding protein 1 (SSBP1), a mitochondrial DNA (mtDNA) replication factor known to coat the heavy-strand, linking 6mA with the regulation of mtDNA replication. Finally, we characterized AlkB homologue 1 (ALKBH1) as a mitochondrial protein with 6mA demethylase activity and showed that its loss decreases mitochondrial oxidative phosphorylation. Our results show that 6mA clusters play a previously unappreciated role in regulating human mitochondrial function, despite 6mA being an uncommon DNA modification in the human genome.


Assuntos
DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Desoxiadenosinas/genética , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Sequência de Bases , Mapeamento Cromossômico , DNA/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleases , Células HEK293 , Humanos , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/metabolismo
8.
Mol Cell Proteomics ; 12(6): 1741-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23462206

RESUMO

We report a high quality and system-wide proteome catalogue covering 71% (3,542 proteins) of the predicted genes of fission yeast, Schizosaccharomyces pombe, presenting the largest protein dataset to date for this important model organism. We obtained this high proteome and peptide (11.4 peptides/protein) coverage by a combination of extensive sample fractionation, high resolution Orbitrap mass spectrometry, and combined database searching using the iProphet software as part of the Trans-Proteomics Pipeline. All raw and processed data are made accessible in the S. pombe PeptideAtlas. The identified proteins showed no biases in functional properties and allowed global estimation of protein abundances. The high coverage of the PeptideAtlas allowed correlation with transcriptomic data in a system-wide manner indicating that post-transcriptional processes control the levels of at least half of all identified proteins. Interestingly, the correlation was not equally tight for all functional categories ranging from r(s) >0.80 for proteins involved in translation to r(s) <0.45 for signal transduction proteins. Moreover, many proteins involved in DNA damage repair could not be detected in the PeptideAtlas despite their high mRNA levels, strengthening the translation-on-demand hypothesis for members of this protein class. In summary, the extensive and publicly available S. pombe PeptideAtlas together with the generated proteotypic peptide spectral library will be a useful resource for future targeted, in-depth, and quantitative proteomic studies on this microorganism.


Assuntos
Regulação Fúngica da Expressão Gênica , Peptídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Bases de Dados de Proteínas , Espectrometria de Massas , Família Multigênica , Mapeamento de Peptídeos , Proteoma/química , Proteoma/genética , RNA Mensageiro/genética , Schizosaccharomyces/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
9.
EMBO Rep ; 13(7): 638-44, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22653443

RESUMO

The invasiveness of tumour cells depends on changes in cell shape, polarity and migration. Mutant p53 induces enhanced tumour metastasis in mice, and human cells overexpressing p53R273H have aberrant polarity and increased invasiveness, demonstrating the 'gain of function' of mutant p53 in carcinogenesis. We hypothesize that p53R273H interacts with mutant p53-specific binding partners that control polarity, migration or invasion. Here we analyze the p53R273H interactome using stable isotope labelling by amino acids in cell culture and quantitative mass spectrometry, and identify at least 15 new potential mutant p53-specific binding partners. The interaction of p53R273H with one of them--nardilysin (NRD1)--promotes an invasive response to heparin binding-epidermal growth factor-like growth factor that is p53R273H-dependant but does not require Rab coupling protein or p63. Advanced proteomics has thus allowed the detection of a new mechanism of p53-driven invasion.


Assuntos
Metaloendopeptidases/metabolismo , Invasividade Neoplásica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Polaridade Celular , Fator de Crescimento Epidérmico/metabolismo , Histidina , Espectrometria de Massas/métodos , Camundongos , Mutação de Sentido Incorreto , Ligação Proteica , Proteômica
10.
Microbiol Spectr ; 10(6): e0393422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314909

RESUMO

Cyr1, the sole adenylyl cyclase of the fungal pathogen Candida albicans, is a central component of the cAMP/protein kinase A signaling pathway that controls the yeast-to-hypha transition. Cyr1 is a multivalent sensor and integrator of various external and internal signals. To better understand how these signals are relayed to Cyr1 to regulate its activity, we sought to establish the interactome of Cyr1 by using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to identify the proteins that coimmunoprecipitated with Cyr1. The method identified 36 proteins as candidates for authentic Cyr1-interacting partners, together with two known Cyr1-binding proteins, Cap1 and Act1. Fourteen identified proteins belonged to three functional groups, including actin regulation, cell wall components, and mitochondrial activities, that are known to play important roles in cell morphogenesis. To validate the proteomics data, we used biochemical and genetic methods to characterize two cell wall-related proteins, Mp65 and Sln1. First, coimmunoprecipitation confirmed their physical association with Cyr1. Second, deleting either MP65 or SLN1 resulted in severe defects in filamentation on serum plates. This study establishes the first Cyr1 interactome and uncovers a potential role for cell wall proteins in directly regulating Cyr1 activity to determine growth forms in C. albicans. IMPORTANCE A critical virulence trait of the human fungal pathogen Candida albicans is its ability to undergo the yeast-to-hypha transition in response to diverse environmental and cellular stimuli. Previous studies suggested that the sole adenylyl cyclase of C. albicans, Cyr1, is a multivalent signal sensor and integrator synthesizing cAMP to activate the downstream hypha-promoting events through the cAMP/protein kinase A pathway. To fully understand how Cyr1 senses and processes multiple stimuli to generate appropriate signal outputs, it was necessary to identify and characterize Cyr1-interacting partners. This study employed SILAC-based quantitative proteomic approaches and identified 36 Cyr1-associated proteins, many having functions associated with hyphal morphogenesis. Coimmunoprecipitation verified two cell surface proteins, Mp65 and Sln1. Furthermore, genetic and phenotypic analyses demonstrated the cAMP-dependent roles of these two proteins in determining hyphal growth. Our study establishes the first Cyr1 interactome and uncovers new Cyr1 regulators that mediate cell surface signals to influence the growth mode of C. albicans.


Assuntos
Adenilil Ciclases , Candida albicans , Actinas/genética , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas , Proteômica
11.
J Cell Biol ; 221(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36074065

RESUMO

The formation of healthy tissue involves continuous remodeling of the extracellular matrix (ECM). Whilst it is known that this requires integrin-associated cell-ECM adhesion sites (CMAs) and actomyosin-mediated forces, the underlying mechanisms remain unclear. Here, we examine how tensin3 contributes to the formation of fibrillar adhesions (FBs) and fibronectin fibrillogenesis. Using BioID mass spectrometry and a mitochondrial targeting assay, we establish that tensin3 associates with the mechanosensors such as talin and vinculin. We show that the talin R11 rod domain binds directly to a helical motif within the central intrinsically disordered region (IDR) of tensin3, whilst vinculin binds indirectly to tensin3 via talin. Using CRISPR knock-out cells in combination with defined tensin3 mutations, we show (i) that tensin3 is critical for the formation of α5ß1-integrin FBs and for fibronectin fibrillogenesis, and (ii) the talin/tensin3 interaction drives this process, with vinculin acting to potentiate it.


Assuntos
Fibronectinas , Adesões Focais , Talina , Tensinas , Adesão Celular , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Adesões Focais/genética , Adesões Focais/metabolismo , Integrinas/metabolismo , Talina/genética , Talina/metabolismo , Tensinas/genética , Tensinas/metabolismo , Vinculina/genética , Vinculina/metabolismo
12.
Theranostics ; 12(15): 6682-6704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185601

RESUMO

Rationale: Diabetic retinopathy (DR) is a major complication of diabetes mellitus causing significant vision loss. DR is a multifactorial disease involving changes in retinal microvasculature and neuronal layers, and aberrations in vascular endothelial growth factors (VEGF) and inflammatory pathways. Despite the success of anti-VEGF therapy, many DR patients do not respond well to the treatment, emphasizing the involvement of other molecular players in neuronal and vascular aberrations in DR. Methods: We employed advanced mass spectrometry-based proteome profiling to obtain a global snapshot of altered protein abundances in vitreous humor from patients with proliferative DR (PDR) in comparison to individuals with epiretinal membrane without active DR or other retinal vascular complications. Global proteome correlation map and protein-protein interaction networks were used to probe into the functional inclination of proteins and aberrated molecular networks in PDR vitreous. In addition, peptide-centric analysis of the proteome data was carried out to identify proteolytic processing, primarily ectodomain shedding events in PDR vitreous. Functional validation experiments were performed using preclinical models of ocular angiogenesis. Results: The vitreous proteome landscape revealed distinct dysregulations in several metabolic, signaling, and immune networks in PDR. Systematic analysis of altered proteins uncovered specific impairment in ectodomain shedding of several transmembrane proteins playing critical roles in neurodegeneration and angiogenesis, pointing to defects in their regulating sheddases, particularly ADAM10, which emerged as the predominant sheddase. We confirmed that ADAM10 protease activity was reduced in animal models of ocular angiogenesis and established that activation of ADAM10 can suppress endothelial cell activation and angiogenesis. Furthermore, we identified the impaired ADAM10-AXL axis as a driver of retinal angiogenesis. Conclusion: We demonstrate restoration of aberrant ectodomain shedding as an effective strategy for treating PDR and propose ADAM10 as an attractive therapeutic target. In all, our study uncovered impaired ectodomain shedding as a prominent feature of PDR, opening new possibilities for advancement in the DR therapeutic space.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Diabetes Mellitus/metabolismo , Retinopatia Diabética/tratamento farmacológico , Peptídeo Hidrolases/metabolismo , Proteoma/análise , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Corpo Vítreo/química , Corpo Vítreo/metabolismo
13.
Traffic ; 10(5): 528-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19220811

RESUMO

The formin family of proteins promotes the assembly of linear actin filaments in the cells of diverse eukaryotic organisms. The predominant formins in mammalian cells are self-inhibited by an intramolecular interaction between two terminal domains and are activated by the binding of the Rho GTPases and other factors. In this study, we show that Bni1p, a formin required for the assembly of actin cables in budding yeast, is also regulated by an autoinhibitory mechanism and phosphorylation by the actin regulatory kinase Prk1p, and possibly Ark1p as well, plays a key role in unlocking the inhibition. Bni1p is phosphorylated by Prk1p at three [L/V/I]xxxxTG motifs in vitro, and the phosphorylation is sufficient to activate Bni1p by disrupting its intramolecular interaction. This finding extends the roles of Prk1p in the regulation of actin dynamics to be associated with both anterograde and retrograde transport pathways, i.e. exocytosis and endocytosis, in yeast.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas , Saccharomyces cerevisiae/metabolismo , Leveduras/metabolismo , Citoesqueleto de Actina/genética , Actinas/química , Actinas/genética , Actinas/metabolismo , Motivos de Aminoácidos/genética , Endocitose/genética , Endocitose/fisiologia , Eucariotos , Metenamina/metabolismo , Fosforilação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae/genética , Leveduras/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
14.
Diabetes ; 70(8): 1654-1663, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33990396

RESUMO

Promoting beige adipocyte development within white adipose tissue (WAT) is a potential therapeutic approach to staunch the current obesity epidemic. Previously, we identified homeobox-containing transcription factor HOXC10 as a suppressor of browning in subcutaneous WAT. Here, we provide evidence for the physiological role of HOXC10 in regulating WAT thermogenesis. Analysis of an adipose-specific HOXC10 knockout mouse line with no detectable HOXC10 in mature adipocytes revealed spontaneous subcutaneous WAT browning, increased expression of genes involved in browning, increased basal rectal temperature, enhanced cold tolerance, and improved glucose homeostasis. These phenotypes were further exacerbated by exposure to cold or a ß-adrenergic stimulant. Mechanistically, cold and ß-adrenergic exposure led to reduced HOXC10 protein level without affecting its mRNA level. Cold exposure induced cAMP-dependent protein kinase-dependent proteasome-mediated degradation of HOXC10 in cultured adipocytes, and shotgun proteomics approach identified KCTD2, 5, and 17 as potential E3 ligases regulating HOXC10 proteasomal degradation. Collectively, these data demonstrate that HOXC10 is a gatekeeper of WAT identity, and targeting HOXC10 could be a plausible therapeutic strategy to unlock WAT thermogenic potentials.


Assuntos
Adipócitos Brancos/metabolismo , Proteínas de Homeodomínio/metabolismo , Gordura Subcutânea/metabolismo , Termogênese/genética , Adipócitos Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Linhagem Celular , Metabolismo Energético/fisiologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout
15.
Mol Biol Cell ; 18(12): 4885-98, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17898076

RESUMO

Pan1p plays essential roles in both actin and endocytosis in yeast. It interacts with, and regulates the function of, multiple endocytic proteins and actin assembly machinery. Phosphorylation of Pan1p by the kinase Prk1p down-regulates its activity, resulting in disassembly of the endocytic vesicle coat complex and termination of vesicle-associated actin polymerization. In this study, we focus on the mechanism that acts to release Pan1p from phosphorylation inhibition. We show that Pan1p is dephosphorylated by the phosphatase Glc7p, and the dephosphorylation is dependent on the Glc7p-targeting protein Scd5p, which itself is a phosphorylation target of Prk1p. Scd5p links Glc7p to Pan1p in two ways: directly by interacting with Pan1p and indirectly by interacting with the Pan1p-binding protein End3p. Depletion of Glc7p from the cells causes defects in cell growth, actin organization, and endocytosis, all of which can be partially suppressed by deletion of the PRK1 gene. These results suggest that Glc7p antagonizes the activity of the Prk1p kinase in regulating the functions of Pan1p and possibly other actin- and endocytosis-related proteins.


Assuntos
Actinas/metabolismo , Endocitose , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas dos Microfilamentos , Mutação/genética , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/genética , Fosforilação , Ligação Proteica , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Fosfatase 1 , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética
16.
Genetics ; 180(3): 1445-57, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791237

RESUMO

Septins are a family of GTP-binding proteins whose heterooligomeric complex is the basic structural element of the septin filaments found in many eukaryotic organisms. In budding yeast, septins are mainly confined at the mother-daughter junction and are required for cell morphogenesis and division. Septins undergo assembly and disassembly in accordance with the progression of the cell cycle. In this report, we identified the yeast protein Syp1p as a new regulator of septin dynamics. Syp1p colocalizes with septins throughout most of the cell cycle. Syp1p interacts with the septin subunit Cdc10p and can be precipitated by Cdc10p and Cdc12p. In the syp1Delta mutant, both formation of a complete septin ring at the incipient bud site and disassembly of the septin ring in later stages of cell division are significantly delayed. In addition, overexpression of Syp1p causes marked acceleration of septin disassembly. The fluorescence recovery after photobleaching (FRAP) assay further showed that Syp1p promotes septin turnover in different cell cycle stages. These results suggest that Syp1p is involved in the regulation of cell cycle-dependent dynamics of the septin cytoskeleton in yeast.


Assuntos
Ciclo Celular/fisiologia , Citoesqueleto/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Estruturas Celulares , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Recuperação de Fluorescência Após Fotodegradação , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Técnicas do Sistema de Duplo-Híbrido
17.
Cell Signal ; 27(3): 436-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25530215

RESUMO

The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications for their potential use as therapeutic agents.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , eIF-2 Quinase/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Partículas de Ribonucleoproteínas em Forma de Abóbada/química , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA