Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 495(7440): 236-40, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23486062

RESUMO

In mammals, sex differentiation of primordial germ cells (PGCs) is determined by extrinsic cues from the environment. In mouse female PGCs, expression of stimulated by retinoic acid gene 8 (Stra8) and meiosis are induced in response to retinoic acid provided from the mesonephroi. Given the widespread role of retinoic acid signalling during development, the molecular mechanisms that enable PGCs to express Stra8 and enter meiosis in a timely manner are unknown. Here we identify gene-dosage-dependent roles in PGC development for Ring1 and Rnf2, two central components of the Polycomb repressive complex 1 (PRC1). Both paralogues are essential for PGC development between days 10.5 and 11.5 of gestation. Rnf2 is subsequently required in female PGCs to maintain high levels of Oct4 (also known as Pou5f1) and Nanog expression, and to prevent premature induction of meiotic gene expression and entry into meiotic prophase. Chemical inhibition of retinoic acid signalling partially suppresses precocious Oct4 downregulation and Stra8 activation in Rnf2-deficient female PGCs. Chromatin immunoprecipitation analyses show that Stra8 is a direct target of PRC1 and PRC2 in PGCs. These data demonstrate the importance of PRC1 gene dosage in PGC development and in coordinating the timing of sex differentiation of female PGCs by antagonizing extrinsic retinoic acid signalling.


Assuntos
Óvulo/citologia , Óvulo/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Diferenciação Sexual/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Cromatina/genética , Cromatina/metabolismo , Regulação para Baixo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Masculino , Meiose , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Complexo Repressor Polycomb 1/deficiência , Complexo Repressor Polycomb 2/metabolismo , Proteínas/genética , Caracteres Sexuais , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Tretinoína/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
2.
Sci Rep ; 5: 14347, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26403153

RESUMO

During mouse preimplantation development, major changes in cell fate are accompanied by extensive alterations of gene expression programs. Embryos first transition from a maternal to zygotic program and subsequently specify the pluripotent and the trophectodermal cell lineages. These processes are regulated by key transcription factors, likely in cooperation with chromatin modifiers that control histone and DNA methylation. To characterize the spatiotemporal expression of chromatin modifiers in relation to developmental transitions, we performed gene expression profiling of 156 genes in individual oocytes and single blastomeres of developing mouse embryos until the blastocyst stage. More than half of the chromatin modifiers displayed either maternal or zygotic expression. We also detected lineage-specific expression of several modifiers, including Ezh1, Prdm14, Scmh1 and Tet1 underscoring possible roles in cell fate decisions. Members of the SET-domain containing SMYD family showed differential gene expression during preimplantation development. We further observed co-expression of genes with opposing biochemical activities, such as histone methyltransferases and demethylases, suggesting the existence of a dynamic chromatin steady-state during preimplantation development.


Assuntos
Blastocisto/metabolismo , Cromatina/genética , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Linhagem da Célula/genética , Análise por Conglomerados , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Camundongos , Análise de Célula Única , Transcriptoma
3.
PLoS One ; 8(2): e56049, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418507

RESUMO

BACKGROUND: The embryo of the crustacean Parhyale hawaiensis has a total, unequal and invariant early cleavage pattern. It specifies cell fates earlier than other arthropods, including Drosophila, as individual blastomeres of the 8-cell stage are allocated to the germ layers and the germline. Furthermore, the 8-cell stage is amenable to embryological manipulations. These unique features make Parhyale a suitable system for elucidating germ layer specification in arthropods. Since asymmetric localization of maternally provided RNA is a widespread mechanism to specify early cell fates, we asked whether this is also true for Parhyale. A candidate gene approach did not find RNAs that are asymmetrically distributed at the 8-cell stage. Therefore, we designed a high-density microarray from 9400 recently sequenced ESTs (1) to identify maternally provided RNAs and (2) to find RNAs that are differentially distributed among cells of the 8-cell stage. RESULTS: Maternal-zygotic transition takes place around the 32-cell stage, i.e. after the specification of germ layers. By comparing a pool of RNAs from early embryos without zygotic transcription to zygotic RNAs of the germband, we found that more than 10% of the targets on the array were enriched in the maternal transcript pool. A screen for asymmetrically distributed RNAs at the 8-cell stage revealed 129 transcripts, from which 50% are predominantly expressed in the early embryonic stages. Finally, we performed knockdown experiments for two of these genes and observed cell-fate-related defects of embryonic development. CONCLUSIONS: In contrast to Drosophila, the four primary germ layer cell lineages in Parhyale are specified during the maternal control phase of the embryo. A key step in this process is the asymmetric distribution of a large number of maternal RNAs to the germ layer progenitor cells.


Assuntos
Anfípodes/genética , Linhagem da Célula/genética , Ectoderma/metabolismo , Mesoderma/metabolismo , Transcriptoma/genética , Anfípodes/embriologia , Anfípodes/metabolismo , Animais , Ectoderma/citologia , Ectoderma/embriologia , Feminino , Mesoderma/citologia , Mesoderma/embriologia , Gravidez
4.
Curr Top Dev Biol ; 104: 243-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23587244

RESUMO

Proper development of an embryo requires tightly controlled expression of specific sets of genes. In order to generate all the lineages of the adult, populations of pluripotent embryonic stem cells differentiate and activate specific transcriptional programs whereas others are shutdown. The role of transcription factors is obvious in promoting expression of such developmental genes; however maintenance of specific states throughout cell division needs additional mechanisms. Indeed, the nucleoprotein complex of DNA and histones, the chromatin, can act as a facilitator or barrier to transcription depending on its configuration. Chromatin-modifying enzymes regulate accessibility of DNA by establishing specific sets of chromatin, which will be either permissive or repressive to transcription. In this review, we will describe the H3K9/HP1 and Polycomb pathways, which mediate transcriptional repression by modifying chromatin. We discuss how these two major epigenetic silencing modes are dynamically regulated and how they contribute to the early steps of embryo development.


Assuntos
Desenvolvimento Embrionário/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Lisina/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Humanos
5.
J Biol Chem ; 284(1): 556-562, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19008225

RESUMO

Small-molecule modulators of cGMP signaling are of interest to basic and clinical research. The cGMP-dependent protein kinase type I (cGKI) is presumably a major mediator of cGMP effects, and the cGMP analogue Rp-8-Br-PET-cGMPS (Rp-PET) (chemical name: beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp-isomer) is currently considered one of the most permeable, selective, and potent cGKI inhibitors available for intact cell studies. Here, we have evaluated the properties of Rp-PET using cGKI-expressing and cGKI-deficient primary vascular smooth muscle cells (VSMCs), purified cGKI isozymes, and an engineered cGMP sensor protein. cGKI activity in intact VSMCs was monitored by cGMP/cGKI-stimulated cell growth and phosphorylation of vasodilator-stimulated phosphoprotein. Unexpectedly, Rp-PET (100 microm) did not efficiently antagonize activation of cGKI by the agonist 8-Br-cGMP (100 microm) in intact VSMCs. Moreover, in the absence of 8-Br-cGMP, Rp-PET (100 microm) stimulated cell growth in a cGKIalpha-dependent manner. Kinase assays with purified cGKI isozymes confirmed the previously reported inhibition of the cGMP-stimulated enzyme by Rp-PET in vitro. However, in the absence of the agonist cGMP, Rp-PET partially activated the cGKIalpha isoform. Experiments with a fluorescence resonance energy transfer-based construct harboring the cGMP binding sites of cGKI suggested that binding of Rp-PET induces a conformational change similar to the agonist cGMP. Together, these findings indicate that Rp-PET is a partial cGKIalpha agonist that under certain conditions stimulates rather than inhibits cGKI activity in vitro and in intact cells. Data obtained with Rp-PET as cGKI inhibitor should be interpreted with caution and not be used as sole evidence to dissect the role of cGKI in signaling processes.


Assuntos
GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , GMP Cíclico/química , Ativação Enzimática/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA