Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 15(3): e0330023, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38329369

RESUMO

Clostridioides difficile infection (CDI) is a major cause of healthcare-associated diarrhea, despite the widespread implementation of contact precautions for patients with CDI. Here, we investigate strain contamination in a hospital setting and the genomic determinants of disease outcomes. Across two wards over 6 months, we selectively cultured C. difficile from patients (n = 384) and their environments. Whole-genome sequencing (WGS) of 146 isolates revealed that most C. difficile isolates were from clade 1 (131/146, 89.7%), while only one isolate of the hypervirulent ST1 was recovered. Of culture-positive admissions (n = 79), 19 (24%) patients were colonized with toxigenic C. difficile on admission to the hospital. We defined 25 strain networks at ≤2 core gene single nucleotide polymorphisms; two of these networks contain strains from different patients. Strain networks were temporally linked (P < 0.0001). To understand the genomic correlates of the disease, we conducted WGS on an additional cohort of C. difficile (n = 102 isolates) from the same hospital and confirmed that clade 1 isolates are responsible for most CDI cases. We found that while toxigenic C. difficile isolates are associated with the presence of cdtR, nontoxigenic isolates have an increased abundance of prophages. Our pangenomic analysis of clade 1 isolates suggests that while toxin genes (tcdABER and cdtR) were associated with CDI symptoms, they are dispensable for patient colonization. These data indicate that toxigenic and nontoxigenic C. difficile contamination persist in a hospital setting and highlight further investigation into how accessory genomic repertoires contribute to C. difficile colonization and disease. IMPORTANCE: Clostridioides difficile infection remains a leading cause of hospital-associated diarrhea, despite increased antibiotic stewardship and transmission prevention strategies. This suggests a changing genomic landscape of C. difficile. Our study provides insight into the nature of prevalent C. difficile strains in a hospital setting and transmission patterns among carriers. Longitudinal sampling of surfaces and patient stool revealed that both toxigenic and nontoxigenic strains of C. difficile clade 1 dominate these two wards. Moreover, quantification of transmission in carriers of these clade 1 isolates underscores the need to revisit infection prevention measures in this patient group. We identified unique genetic signatures associated with virulence in this clade. Our data highlight the complexities of preventing transmission of this pathogen in a hospital setting and the need to investigate the mechanisms of in vivo persistence and virulence of prevalent lineages in the host gut microbiome.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Clostridioides difficile/genética , Virulência , Infecções por Clostridium/epidemiologia , Genômica , Diarreia
2.
medRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38105952

RESUMO

Clostridioides difficile infection (CDI) is a major cause of healthcare-associated diarrhea, despite the widespread implementation of contact precautions for patients with CDI. Here, we investigate strain contamination in a hospital setting and genomic determinants of disease outcomes. Across two wards over six months, we selectively cultured C. difficile from patients (n=384) and their environments. Whole-genome sequencing (WGS) of 146 isolates revealed that most C. difficile isolates were from clade 1 (131/146, 89.7%), while only one isolate of the hypervirulent ST1 was recovered. Of culture-positive admissions (n=79), 19 (24%) of patients were colonized with toxigenic C. difficile on admission to the hospital. We defined 25 strain networks at ≤ 2 core gene SNPs; 2 of these networks contain strains from different patients. Strain networks were temporally linked (p<0.0001). To understand genomic correlates of disease, we conducted WGS on an additional cohort of C. difficile (n=102 isolates) from the same hospital and confirmed that clade 1 isolates are responsible for most CDI cases. We found that while toxigenic C. difficile isolates are associated with the presence of cdtR , nontoxigenic isolates have an increased abundance of prophages. Our pangenomic analysis of clade 1 isolates suggests that while toxin genes ( tcdABER and cdtR ) were associated with CDI symptoms, they are dispensable for patient colonization. These data indicate toxigenic and nontoxigenic C. difficile contamination persists in a hospital setting and highlight further investigation into how accessory genomic repertoires contribute to C. difficile colonization and disease.

3.
Sci Transl Med ; 15(700): eabo2984, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37315112

RESUMO

Alzheimer's disease (AD) pathology is thought to progress from normal cognition through preclinical disease and ultimately to symptomatic AD with cognitive impairment. Recent work suggests that the gut microbiome of symptomatic patients with AD has an altered taxonomic composition compared with that of healthy, cognitively normal control individuals. However, knowledge about changes in the gut microbiome before the onset of symptomatic AD is limited. In this cross-sectional study that accounted for clinical covariates and dietary intake, we compared the taxonomic composition and gut microbial function in a cohort of 164 cognitively normal individuals, 49 of whom showed biomarker evidence of early preclinical AD. Gut microbial taxonomic profiles of individuals with preclinical AD were distinct from those of individuals without evidence of preclinical AD. The change in gut microbiome composition correlated with ß-amyloid (Aß) and tau pathological biomarkers but not with biomarkers of neurodegeneration, suggesting that the gut microbiome may change early in the disease process. We identified specific gut bacterial taxa associated with preclinical AD. Inclusion of these microbiome features improved the accuracy, sensitivity, and specificity of machine learning classifiers for predicting preclinical AD status when tested on a subset of the cohort (65 of the 164 participants). Gut microbiome correlates of preclinical AD neuropathology may improve our understanding of AD etiology and may help to identify gut-derived markers of AD risk.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Humanos , Estudos Transversais , Peptídeos beta-Amiloides
4.
Commun Med (Lond) ; 2: 62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664456

RESUMO

Background: Healthcare-associated infections due to antibiotic-resistant organisms pose an acute and rising threat to critically ill and immunocompromised patients. To evaluate reservoirs of antibiotic-resistant organisms as a source of transmission to patients, we interrogated isolates from environmental surfaces, patient feces, and patient blood infections from an established and a newly built intensive care unit. Methods: We used selective culture to recover 829 antibiotic-resistant organisms from 1594 environmental and 72 patient fecal samples, in addition to 81 isolates from blood cultures. We conducted antibiotic susceptibility testing and short- and long-read whole genome sequencing on recovered isolates. Results: Antibiotic-resistant organism burden is highest in sink drains compared to other surfaces. Pseudomonas aeruginosa is the most frequently cultured organism from surfaces in both intensive care units. From whole genome sequencing, different lineages of P. aeruginosa dominate in each unit; one P. aeruginosa lineage of ST1894 is found in multiple sink drains in the new intensive care unit and 3.7% of blood isolates analyzed, suggesting movement of this clone between the environment and patients. Conclusions: These results highlight antibiotic-resistant organism reservoirs in hospital built environments as an important target for infection prevention in hospitalized patients.

5.
Elife ; 112022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35083969

RESUMO

Clostridioides difficile infection (CDI) imposes a substantial burden on the health care system in the United States. Understanding the biological basis for the spectrum of C. difficile-related disease manifestations is imperative to improving treatment and prevention of CDI. Here, we investigate the correlates of asymptomatic C. difficile colonization using a multi-omics approach. We compared the fecal microbiome and metabolome profiles of patients with CDI versus asymptomatically colonized patients, integrating clinical and pathogen factors into our analysis. We found that CDI patients were more likely to be colonized by strains with the binary toxin (CDT) locus or strains of ribotype 027, which are often hypervirulent. We find that microbiomes of asymptomatically colonized patients are significantly enriched for species in the class Clostridia relative to those of symptomatic patients. Relative to CDI microbiomes, asymptomatically colonized patient microbiomes were enriched with sucrose degradation pathways encoded by commensal Clostridia, in addition to glycoside hydrolases putatively involved in starch and sucrose degradation. Fecal metabolomics corroborates the carbohydrate degradation signature: we identify carbohydrate compounds enriched in asymptomatically colonized patients relative to CDI patients. Further, we reveal that across C. difficile isolates, the carbohydrates sucrose, rhamnose, and lactulose do not serve as robust growth substrates in vitro, consistent with their enriched detection in our metagenomic and metabolite profiling of asymptomatically colonized individuals. We conclude that pathogen genetic variation may be strongly related to disease outcome. More interestingly, we hypothesize that in asymptomatically colonized individuals, carbohydrate metabolism by other commensal Clostridia may prevent CDI by inhibiting C. difficile proliferation. These insights into C. difficile colonization and putative commensal competition suggest novel avenues to develop probiotic or prebiotic therapeutics against CDI.


Assuntos
Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Microbioma Gastrointestinal , Fezes/microbiologia , Humanos , Metabolômica , Metagenômica , Ribotipagem , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA