Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 14(38): e1801483, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30102452

RESUMO

A lack of inversion symmetry coupled with the presence of time-reversal symmetry endows 2D transition metal dichalcogenides with individually addressable valleys in momentum space at the K and K' points in the first Brillouin zone. This valley addressability opens up the possibility of using the momentum state of electrons, holes, or excitons as a completely new paradigm in information processing. The opportunities and challenges associated with manipulation of the valley degree of freedom for practical quantum and classical information processing applications were analyzed during the 2017 Workshop on Valleytronic Materials, Architectures, and Devices; this Review presents the major findings of the workshop.

2.
Nano Lett ; 12(11): 5714-8, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23045955

RESUMO

Here we report on the fabrication and characterization of a novel type of strain gauge based on percolative networks of 2D materials. The high sensitivity of the percolative carrier transport to strain induced morphology changes was exploited in strain sensors that can be produced from a wide variety of materials. Highly reliable and sensitive graphene-based thin film strain gauges were produced from solution processed graphene flakes by spray deposition. Control of the gauge sensitivity could be exerted through deposition-induced changes to the film morphology. This exceptional property was explained through modeling of the strain induced changes to the flake-flake overlap for different percolation networks. The ability to directly deposit strain gauges on complex-shaped and transparent surfaces was presented. The demonstrated scalable fabrication, superior sensitivity over conventional sensors, and unique properties of the described strain gauges have the potential to improve existing technology and open up new fields of applications for strain sensors.

3.
Nano Lett ; 12(1): 161-6, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22111957

RESUMO

Hexagonal boron nitride (h-BN) is very attractive for many applications, particularly, as protective coating, dielectric layer/substrate, transparent membrane, or deep ultraviolet emitter. In this work, we carried out a detailed investigation of h-BN synthesis on Cu substrate using chemical vapor deposition (CVD) with two heating zones under low pressure (LP). Previous atmospheric pressure (AP) CVD syntheses were only able to obtain few layer h-BN without a good control on the number of layers. In contrast, under LPCVD growth, monolayer h-BN was synthesized and time-dependent growth was investigated. It was also observed that the morphology of the Cu surface affects the location and density of the h-BN nucleation. Ammonia borane is used as a BN precursor, which is easily accessible and more stable under ambient conditions than borazine. The h-BN films are characterized by atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy analyses. Our results suggest that the growth here occurs via surface-mediated growth, which is similar to graphene growth on Cu under low pressure. These atomically thin layers are particularly attractive for use as atomic membranes or dielectric layers/substrates for graphene devices.


Assuntos
Compostos de Boro/química , Cobre/química , Cristalização/métodos , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
4.
Nanotechnology ; 23(1): 015701, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22156239

RESUMO

In this work, the electrical characterization of graphene films grown by chemical vapor deposition (CVD) on a Ni thin film is carried out and a simple relation between the gate-dependent electrical transport and the thickness of the films is presented. Arrays of two-terminal devices with an average graphene film thickness of 6.9 nm were obtained using standard fabrication techniques. A simple two-band model is used to describe the graphene films, with a band overlap parameter E(0) = 17 meV determined by the dependence of conductivity on temperature. Statistical electrical measurement data are presented for 126 devices, with an extracted average background conductivity σ = 0.91 mS, average carrier mobility µ = 1300 cm(2) V(-1) s(-1) and residual resistivity ρ = 1.65 kΩ. The ratio of mobility to conductivity is calculated to be inversely proportional to the graphene film thickness and this calculation is statistically verified for the ensemble of 126 devices. This result is a new method of graphene film thickness determination and is useful for films which cannot have their thickness measured by AFM or optical interference, but which are electrically contacted and gated. This general approach provides a framework for comparing graphene devices made using different fabrication methods and graphene growth techniques, even without prior knowledge of their uniformity or thickness.

5.
Nano Lett ; 10(11): 4715-20, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20945929

RESUMO

In this work, we have demonstrated that the local deformation at the crossed carbon nanotube (CNT) junctions can introduce significant tunable local gate effect under ambient environment. Atomic force microscope (AFM) manipulation of the local deformation yielded a variation in transconductance that was retained after removing the AFM tip. Application of a large source-drain voltage and pressing the CNT junction above a threshold pressure can respectively erase and recover the transconductance modulation reversibly. The local gate effect is found to be independent of the length of the crossed CNT and attributed to the charges residing at the deformed junctions due to formation of localized states. The number of localized charges is estimated to be in the range of 10(2) to 10(3). These results may find potential applications in electromechanical sensors and could have important implications for designing nonvolatile devices based on crossed CNT junctions.


Assuntos
Cristalização/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Semicondutores , Módulo de Elasticidade , Condutividade Elétrica , Campos Eletromagnéticos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície
6.
Science ; 362(6415): 665-670, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30309906

RESUMO

Although flakes of two-dimensional (2D) heterostructures at the micrometer scale can be formed with adhesive-tape exfoliation methods, isolation of 2D flakes into monolayers is extremely time consuming because it is a trial-and-error process. Controlling the number of 2D layers through direct growth also presents difficulty because of the high nucleation barrier on 2D materials. We demonstrate a layer-resolved 2D material splitting technique that permits high-throughput production of multiple monolayers of wafer-scale (5-centimeter diameter) 2D materials by splitting single stacks of thick 2D materials grown on a single wafer. Wafer-scale uniformity of hexagonal boron nitride, tungsten disulfide, tungsten diselenide, molybdenum disulfide, and molybdenum diselenide monolayers was verified by photoluminescence response and by substantial retention of electronic conductivity. We fabricated wafer-scale van der Waals heterostructures, including field-effect transistors, with single-atom thickness resolution.

7.
Nano Lett ; 9(1): 30-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19046078

RESUMO

In this work we present a low cost and scalable technique, via ambient pressure chemical vapor deposition (CVD) on polycrystalline Ni films, to fabricate large area ( approximately cm2) films of single- to few-layer graphene and to transfer the films to nonspecific substrates. These films consist of regions of 1 to approximately 12 graphene layers. Single- or bilayer regions can be up to 20 mum in lateral size. The films are continuous over the entire area and can be patterned lithographically or by prepatterning the underlying Ni film. The transparency, conductivity, and ambipolar transfer characteristics of the films suggest their potential as another materials candidate for electronics and opto-electronic applications.


Assuntos
Cristalização/métodos , Grafite/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Nano Lett ; 8(12): 4122-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367958

RESUMO

A new tool for studying the process of carbon nanotube chemical vapor deposition (CVD) synthesis is described. By rotating the substrate in situ during the CVD process, the orientation of floating nanotubes with respect to the substrate is changed by interaction with the gas stream. Nanotubes lying on the surface of the substrate, however, will maintain their relative orientation. As a result different nanotube alignment angles are observed. By defining a time window through multiple rotation steps it is possible to study carbon nanotube behavior during CVD growth in a time-resolved manner. As an example, the settling process (i.e., the sinking of the nanotube to the substrate) is investigated. The analysis of forces acting on a floating nanotube shows that a vertical gas stream due to thermal buoyancy over the sample can keep long nanotubes floating for extended times. A stochastic process, indicated by a constant settling rate over time, forces the nanotube to make contact with the substrate, and this process is attributed to flow induced instability. Additional information on the floating and settling process are revealed from our study. The settling velocity could be inferred from curved nanotubes. The clearance between a floating nanotube and the substrate was found to be several hunded micrometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA