Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(22): e202304268, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38335035

RESUMO

High-quality conjugated microporous polymer (CMP) films with orientation and controlled structure are extremely desired for applications. Here, we report the effective construction of CMP 3D composite films (pZn/PTPCz) with a controlled porosity structure and preferred orientation using the template-assisted electropolymerization (EP) approach for the first time. The structure of pZn/PTPCz composite thin films and nitrophenol sensing performance were thoroughly studied. When compared to the control CMP film made on flat indium tin oxide (ITO) substrates, the as-prepared pZn/PTPCz composite films showed significantly enhanced fluorescent intensity and much better sensing performance for the model explosive. This was attributed to the metal-enhanced fluorescence (MEF) of porous nanostructured zinc (pZn) and the additional macroporosity of the pZn/PTPCz composite films. This work provides a feasible approach for creating oriented 3D CMP-based thin films for advanced applications.

2.
Nanotechnology ; 34(14)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36621847

RESUMO

Copper-based halide perovskites have shown great potential in lighting and photodetection due to their excellent photoelectric properties, good stability and lead-free nature. However, as an important piece of copper-based perovskites, the synthesis and application of RbCu2I3have never been reported. Here, we demonstrate the synthesis of high-quality RbCu2I3microwires (MWs) by a fast-cooling hot saturated solution method. The prepared MWs exhibit an orthorhombic structure with a smooth surface. Optical measurements show the RbCu2I3MWs have a sharp ultraviolet absorption edge with 3.63 eV optical band gap and ultra-large stokes shift (300 nm) in photoluminescence. The subsequent photodetector based on a single RbCu2I3MW shows excellent ultraviolet detection performance. Under the 340 nm illumination, the device shows a specific detectivity of 5.0 × 109Jones and a responsivity of 380 mA·W-1. The synthesis method and physical properties of RbCu2I3could be a guide to the future optoelectronic application of the new material.

3.
Langmuir ; 38(23): 7129-7136, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35658446

RESUMO

Transparent superhydrophobic coatings with mechanical stability, self-cleaning function, and anti-reflective property have drawn much attention due to the great potential in a variety of real-world applications. In this work, we develop an ingenious approach to construct micropatterned transparent superhydrophobic coatings with a multilayer structure (water contact angle ∼153.6°, sliding angle ∼3.2°). A micropatterned ultraviolet-cured resist frame facilitates durability, while the modified silica nanoparticles, which are housed within the micro-cavities and bonded by an epoxy-based adhesive, impart superhydrophobicity. The micropatterned multilayer surface could endure sandpaper abrasion while maintaining satisfactory hydrophobicity. The prepared surfaces also retain the excellent water repellency after water jet impact, acid submerging, and mechanical bending, suggesting that they are sustainable in the case of adverse conditions and can be integrated with objects with non-flat geometries. Further, the superhydrophobic coatings exhibit an anti-reflection property while preserving high transparency. Taken together, we envision that the design strategies here can offer a practicable route to produce transparent superhydrophobic coatings for diverse outdoor applications.

4.
Small ; 17(43): e2101482, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34151516

RESUMO

2D materials have been interesting for applications into nanodevices due to their intriguing physical properties. In this work, four types of unique structures are designed that are composed of MXenes and C/N-Si layers (CNSi), where MXene is sandwiched by the CNSi layers with different thicknesses, for their practical applications into integrated devices. The systematic calculations on their elastic constants, phonon dispersions, and thermodynamic properties show that these structures are stable, depending on the composition of MXene. It is found: 1) different from MXene or N-functionalized MXene (M2 CN2 ), SiN2 /M2 X/SiN2 possess new electronic properties with free carriers only in the middle, leading to 2D free electron gas; 2) CNSi/MXene/CNSi shows an intrinsic Ohmic semiconductor-metal-semiconductor (S-M-S) contact, which is potential for applications into nanodevices; and 3) O/M2 C/SiN2 and N/M2 C/OSiN are also stable and show different electronic properties, which can be semiconductor or metal as a whole depending on the interface. A method is further proposed to fabricate the 2D structures based on the industrial availability. The findings may provide a novel strategy to design and fabricate the 2D structures for their application into nanodevices and integrated circuits.

5.
Small ; 17(43): e2101359, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34121319

RESUMO

Colloidal all-inorganic perovskites nanocrystals (NCs) have emerged as a promising material for display and lighting due to their excellent optical properties. However, blue emissive NCs usually suffer from low photoluminescence quantum yields (PLQYs) and poor stability, rendering them the bottleneck for full-color all-perovskite optoelectronic applications. Herein, a facile approach is reported to enhance the emission efficiency and stability of blue emissive perovskite nano-structures via surface passivation with potassium bromide. By adding potassium oleate and excess PbBr2 to the perovskite precursor solutions, potassium bromide-passivated (KBr-passivated) blue-emitting (≈450 nm) CsPbBr3 nanoplatelets (NPLs) is successfully synthesized with a respectably high PLQY of 87%. In sharp contrast to most reported perovskite NPLs, no shifting in emission wavelength is observed in these passivated NPLs even after prolonged exposures to intense irradiations and elevated temperature, clearly revealing their excellent photo- and thermal-stabilities. The enhancements are attributed to the formation of K-Br bonding on the surface which suppresses ion migration and formation of Br-vacancies, thus improving both the PL emission and stability of CsPbBr3 NPLs. Furthermore, all-perovskite white light-emitting diodes (WLEDs) are successfully constructed, suggesting that the proposed KBr-passivated strategy can promote the development of the perovskite family for a wider range of optoelectronic applications.

6.
Small ; 17(17): e2007557, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733600

RESUMO

Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble-metal-free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/Cox P multi-phase heterostructure on Ni foam via an electrodeposition method followed by phosphorization exhibits ultra-highly catalytic activity for HER. The optimized CoNiP/Cox P multi-phase heterostructure achieves an excellent HER performance with an ultralow overpotential of 36 mV at 10 mA cm-2 , superior to commercial Pt/C. Importantly, the multi-phase heterostructure shows exceptional stability as confirmed by the long-term potential cycles (30,000 cycles) and extended electrocatalysis (up to 500 h) in alkaline solution and natural seawater. Experimental characterizations and DFT calculations demonstrate that the strong electronic interaction at the heterointerface of CoNiP/CoP is achieved via the electron transfer from CoNiP to the heterointerface, which directly promotes the dissociation of water at heterointerface and desorption of hydrogen on CoNiP. These findings may provide deep understanding on the HER mechanism of heterostructure electrocatalysts and guidance on the design of earth-abundant, cost-effective electrocatalysts with superior HER activity for practical applications.

7.
Phys Chem Chem Phys ; 22(31): 17632-17638, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32720955

RESUMO

Searching for two-dimensional (2D) materials with a high phase-transition temperature and magnetic anisotropy is critical to the development of spintronics. Herein, we investigate the electronic and magnetic properties of 2D TiX3 (X = F, Cl, Br and I) monolayers based on density-functional theory (DFT). We show that the 2D TiX3 monolayers are stable dynamically and thermodynamically as evidenced by phonon and molecular dynamics calculations, respectively, and show their semiconducting nature. We find that the TiBr3 and TiI3 monolayers are ferromagnetic with magnetic anisotropy out of plane, which are intrinsic without the need for external intervention. The magnetic anisotropy energies of the TiBr3 and TiI3 monolayers are 0.8 and 2.5 meV per s.f., respectively. The Curie temperatures of TiBr3 and TiI3 are 75 K and 90 K, respectively. We further show that the interlayer magnetic coupling and magnetic anisotropy energies (MAE) of the bilayer TiI3 can be tuned by the interlayer distance. Additionally, a two-step transition in the magnetic state is observed in the bilayer TiI3 with AB' stacking under applied strain in a vertical direction. It is expected that our design may enrich two-dimensional functional materials, which may find versatile applications.

8.
Nanotechnology ; 29(22): 225601, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29517486

RESUMO

We report the growth of vertically stacked InGaAs/InP quantum wires on (001) Si substrates with adjustable room-temperature emission at telecom bands. Based on a self-limiting growth mode in selective area metal-organic chemical vapor deposition, crescent-shaped InGaAs quantum wires with variable dimensions are embedded within InP nano-ridges. With extensive transmission electron microscopy studies, the growth transition and morphology change from quantum wires to ridge quantum wells (QWs) have been revealed. As a result, we are able to decouple the quantum wires from ridge QWs and manipulate their dimensions by scaling the growth time. With minimized lateral dimension and their unique positioning, the InGaAs/InP quantum wires are more immune to dislocations and more efficient in radiative processes, as evidenced by their excellent optical quality at telecom-bands. These promising results thus highlight the potential of combining low-dimensional quantum wire structures with the aspect ratio trapping process for integrating III-V nano-light emitters on mainstream (001) Si substrates.

9.
Nano Lett ; 15(11): 7189-98, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26444034

RESUMO

The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 µm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.


Assuntos
Nanoestruturas/química , Nanofios/química , Silício/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Nanotecnologia , Nanofios/ultraestrutura , Semicondutores
10.
Nano Lett ; 15(8): 4961-7, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26083622

RESUMO

Low cost, high efficiency photovoltaic can help accelerate the adoption of solar energy. Using tapered indium phosphide nanopillars grown on a silicon substrate, we demonstrate a single nanopillar photovoltaic exhibiting illumination angle insensitive response. The photovoltaic employs a novel regrown core-shell p-i-n junction to improve device performance by eliminating shunt current paths, resulting in a high VOC of 0.534 V and a power conversion efficiency of 19.6%. Enhanced broadband light absorption is also demonstrated over a wide spectral range of 400-800 nm.

11.
Nano Lett ; 14(8): 4757-62, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24988280

RESUMO

III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.

12.
Nano Lett ; 14(1): 183-90, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24299042

RESUMO

Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and InP nanoneedles with the base diameters exceeding 1 µm. Here, we report distinct optical characteristics of InP nanoneedles which are varied from mostly zincblende, zincblende/wurtzite-mixed, to pure wurtzite crystalline phase. We achieved, for the first time, pure single-crystal wurtzite-phase InP nanoneedles grown on silicon with bandgaps of 80 meV larger than that of zincblende-phase InP. Being able to attain excellent material quality while scaling up in size promises outstanding device performance of these nanoneedles. At room temperature, a high internal quantum efficiency of 25% and optically pumped lasing are demonstrated for single nanoneedle as-grown on silicon substrate. Recombination dynamics proves the excellent surface quality of the InP nanoneedles, which paves the way toward achieving multijunction photovoltaic cells, long-wavelength heterostructure lasers, and advanced photonic integrated circuits.

13.
Nano Lett ; 14(6): 3235-40, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24841253

RESUMO

The growth of III-V nanowires on silicon is a promising approach for low-cost, large-scale III-V photovoltaics. However, performances of III-V nanowire solar cells have not yet been as good as their bulk counterparts, as nanostructured light absorbers are fundamentally challenged by enhanced minority carriers surface recombination rates. The resulting nonradiative losses lead to significant reductions in the external spontaneous emission quantum yield, which, in turn, manifest as penalties in the open-circuit voltage. In this work, calibrated photoluminescence measurements are utilized to construct equivalent voltage-current characteristics relating illumination intensities to Fermi level splitting ΔF inside InP microillars. Under 1 sun, we show that splitting can exceed ΔF ∼ 0.90 eV in undoped pillars. This value can be increased to values of ΔF ∼ 0.95 eV by cleaning pillar surfaces in acidic etchants. Pillars with nanotextured surfaces can yield splitting of ΔF ∼ 0.90 eV, even though they exhibit high densities of stacking faults. Finally, by introducing n-dopants, ΔF of 1.07 eV can be achieved due to a wider bandgap energy in n-doped wurzite InP, the higher brightness of doped materials, and the extraordinarily low surface recombination velocity of InP. This is the highest reported value for InP materials grown on a silicon substrate. These results provide further evidence that InP micropillars on silicon could be a promising material for low-cost, large-scale solar cells with high efficiency.

14.
Nano Lett ; 13(12): 5931-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224535

RESUMO

Monolithic integration of III-V optoelectronic devices with materials for various functionalities inexpensively is always desirable. Polysilicon (poly-Si) is an ideal platform because it is dopable and semiconducting, and can be deposited and patterned easily on a wide range of low cost substrates. However, the lack of crystalline coherency in poly-Si poses an immense challenge for high-quality epitaxial growth. In this work, we demonstrate, for the first time, direct growth of micrometer-sized InGaAs/GaAs nanopillars on polysilicon. Transmission electron microscopy shows that the micrometer-sized pillars are single-crystalline with pure wurzite-phase, far exceeding the substrate crystal grain size ~100 nm. The high quality growth is enabled by the unique tapering geometry at the base of the nanostructure, which reduces the effective InGaAs/Si contact area to <40 nm in diameter. The small footprint not only reduces stress due to lattice mismatch but also prevents the nanopillar from nucleating on multiple Si crystal grains. This relaxes the grain size requirement for poly-Si, potentially reducing the cost for poly-Si deposition. Lasing is achieved in the as-grown pillars under optical pumping, attesting their excellent crystalline and optical quality. These promising results open up a pathway for low-cost synergy of optoelectronics with other technologies such as CMOS integrated circuits, sensing, nanofluidics, thin film transistor display, photovoltaics, and so forth.


Assuntos
Arsenicais/química , Gálio/química , Índio/química , Silício/química , Cristalização , Lasers , Nanoestruturas/química , Óptica e Fotônica , Polímeros/química , Propriedades de Superfície
15.
ACS Appl Mater Interfaces ; 16(8): 10398-10406, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38380978

RESUMO

The rapid evolution of the Internet of Things has engendered increased requirements for low-cost, self-powered UV photodetectors. Herein, high-performance self-driven UV photodetectors are fabricated by designing asymmetric metal-semiconductor-metal structures on the high-quality large-area CsCu2I3 microwire arrays. The asymmetrical depletion region doubles the photocurrent and response speed compared to the symmetric structure device, leading to a high responsivity of 233 mA/W to 355 nm radiation. Notably, at 0 V bias, the asymmetric device produces an open-circuit voltage of 356 mV and drives to a short-circuit current of 372 pA; meanwhile, the switch ratio (Iph/Idark) reaches up to 103, indicating its excellent potential for detecting weak light. Furthermore, the device maintains stable responses throughout 10000 UV-light switch cycles, with negligible degradation even after 90-day storage in air. Our work establishes that CsCu2I3 is a good candidate for self-powered UV detection and thoroughly demonstrates its potential as a passive device.

16.
J Phys Condens Matter ; 36(6)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813101

RESUMO

Recently, a new layered material, Mn3Si2Te6, was identified to be a semiconductor with nodal-line topological property and ferrimagnetic ground state. In this work, we propose a series of structures, M3Si2Te6(M = alkaline earth and transition metals), and systematically investigate their mechanical, magnetic and electronic properties, and the strain effect to enrich the family of the layered materials for practical applications. We find 13 stable M3Si2Te6, including 5 semiconductors (M = Ca, Sr, Fe, Ru and Os) and 8 metals (M = Sc, Ti, Nb, Ta, Cr, Mo, W and Tc). Two structures (M = Ti and Cr) are antiferromagnetic (AFM), while other structures are non-magnetic (NM). Similar to Mn3Si2Te6, the AFM structures exhibit magnetic anisotropy energies (MAEs) and semiconductors have anisotropic electron effective masses. We further show that compressions along thez-axis can effectively tune the electronic and magnetic properties, such as the semiconductor-metal and NM-AFM transition in Fe3Si2Te6, the two-fold degeneracy of the valence band maximums in Sr3Si2Te6, as well as the reduced MAE for all magnetic structures. These results demonstrate the diverse properties of the layered M3Si2Te6family and provide promising theoretical predictions for the future design of new layered materials.

17.
Environ Pollut ; 333: 122099, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356791

RESUMO

This research explores the influence of renewable fuels, including three kinds of biodiesel along with ethanol on the physical properties and structural characteristics of particulate matter (PM) emitted from a diesel engine in comparison with pure diesel. After adding 10 vol% of grape seed biodiesel, coffee biodiesel and eucalyptus oil into diesel, three biodiesel blended fuels (10% grape seed biodiesel (DGs10), 10% spent coffee ground biodiesel (DC10) and eucalyptus oil biodiesel (DEu10)) were produced and tested in this study. Besides, one ethanol blend containing 9 vol% of ethanol and 1 vol% of biodiesel (blend stabilizer) was also tested to do the comparison. In the present study, scanning transmission electron microscope (STEM) and scanning electron microscope (SEM) were employed for analyzing the microstructure, nanostructure and electron diffraction pattern of PM. Raman spectrometer (RS) was also used for the analysis of structural characterization of PM. In addition, several experimental instruments like microbalance, measuring cup, viscometer, oxygen bomb calorimeter and Gas Chromatography-Mass Spectrometer (GC-MS) were employed to detect the fuel properties, including density, heating value, viscosity, composition and cetane number. A conclusion can be drawn that both biodiesel blends and ethanol blend have a changing effect on the PM properties compared to pure diesel, where biodiesel blends have a slightly weaker influence than ethanol blend. Regarding the biodiesel blends, DGs10 has more impact than DC10 and DEu10 in changes of PM properties, particularly in the reduction of PM mass, making it a good candidate for renewable fuel for diesel engines.


Assuntos
Biocombustíveis , Material Particulado , Material Particulado/análise , Biocombustíveis/análise , Gasolina/análise , Emissões de Veículos/análise , Óleo de Eucalipto , Café , Etanol
18.
Adv Mater ; 35(21): e2300632, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36916201

RESUMO

Stacked 2D perovskites provide more possibilities for next generation photodetector with more new features. Compared with its excellent optoelectronic properties, the good dielectric performance of metal halide perovskite rarely comes into notice. Here, a bifunctional perovskite based photovoltaic detector capable of two wavelength demultiplexing is demonstrated. In the Black Phosphorus/Perovskite/MoS2 structured photodetector, the comprehensive utilization of the photosensitive and dielectric properties of 2D perovskite allows the device to work in different modes. The device shows normal continuous photoresponse under 405 nm, while it shows a transient spike response to visible light with longer wavelengths. The linear dynamic range, rise/decay time, and self-powered responsivity under 405 nm can reach 100, 38 µs/50 µs, and 17.7 mA W-1 , respectively. It is demonstrated that the transient spike photocurrent with long wavelength exposure is related to the illumination intensity and can coexist with normal photoresponse. Two waveband-dependent signals can be identified and used to reflect more information simultaneously. This work provides a new strategy for multispectral detection and demultiplexing, which can be used to improve data transfer rates and encrypted communications. This work mode can inspire more multispectral photodetectors with different stacked 2D materials, especially to the optoelectronic application of the wide bandgap, high dielectric photosensitive materials.

19.
Opt Express ; 20(11): 12171-6, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714204

RESUMO

We report novel indium gallium arsenide (InGaAs) nanopillar lasers that are monolithically grown on (100)-silicon-based functional metal-oxide-semiconductor field effect transistors (MOSFETs) at low temperature (410 °C). The MOSFETs maintain their performance after the nanopillar growth, providing a direct demonstration of complementary metal-oxide-semiconudctor (CMOS) compatibility. Room-temperature operation of optically pumped lasers is also achieved. To our knowledge, this is the first time that monolithically integrated lasers and transistors have been shown to work on the same silicon chip, serving as a proof-of-concept that such integration can be extended to more complicated CMOS integrated circuits.


Assuntos
Arsenicais/química , Gálio/química , Índio/química , Lasers , Nanotecnologia/instrumentação , Silício/química , Transistores Eletrônicos , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
20.
Nano Lett ; 11(2): 385-90, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21174451

RESUMO

Monolithic integration of III-V compound semiconductor devices with silicon CMOS integrated circuits has been hindered by large lattice mismatches and incompatible processing due to high III-V epitaxy temperatures. We report the first GaAs-based avalanche photodiodes (APDs) and light emitting diodes, directly grown on silicon at a very low, CMOS-compatible temperature and fabricated using conventional microfabrication techniques. The APDs exhibit an extraordinarily large multiplication factor at low voltage resulting from the unique needle shape and growth mode.


Assuntos
Arsenicais/química , Gálio/química , Iluminação/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Fotometria/instrumentação , Semicondutores , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Silício/química , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA