Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38957985

RESUMO

Institutional support is crucial for the successful career advancement of all faculty but in particular those who are women. Evolving from the past, in which gender disparities were prevalent in many institutions, recent decades have witnessed significant progress in supporting the career advancement of women faculty in science and academic medicine. However, continued advancement is necessary as previously unrecognized needs and new opportunities for improvement emerge. To identify the needs, opportunities, and potential challenges encountered by women faculty, the Women's Leadership Committee of the Arteriosclerosis, Thrombosis, and Vascular Biology Council developed an initiative termed GROWTH (Generating Resources and Opportunities for Women in Technology and Health). The committee designed a survey questionnaire and interviewed 19 leaders with roles and responsibilities in faculty development from a total of 12 institutions across various regions of the United States. The results were compiled, analyzed, and discussed. Based on our interviews and analyses, we present the current status of these representative institutions in supporting faculty development, highlighting efforts specific to women faculty. Through the experiences, insights, and vision of these leaders, we identified success stories, challenges, and future priorities. Our article provides a primer and a snapshot of institutional efforts to support the advancement of women faculty. Importantly, this article can serve as a reference and resource for academic entities seeking ideas to gauge their commitment level to women faculty and to implement new initiatives. Additionally, this article can provide guidance and strategies for women faculty as they seek support and resources from their current or prospective institutions when pursuing new career opportunities.

2.
Circ Res ; 130(10): 1510-1530, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35430876

RESUMO

BACKGROUND: Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS: We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS: In addition to macrophages, we found a high proportion of αß T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αß T cells (CD4

Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Linfócitos T , Antígenos , Células Clonais/imunologia , Doença da Artéria Coronariana/imunologia , Células Endoteliais , Epitopos , Cadeias alfa de HLA-DR , Humanos , Ativação Linfocitária , Placa Aterosclerótica/imunologia , Linfócitos T/imunologia
3.
Arterioscler Thromb Vasc Biol ; 43(7): 1262-1277, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37051932

RESUMO

BACKGROUND: Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia. METHODS: The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions. RESULTS: Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice. CONCLUSIONS: These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.


Assuntos
Células-Tronco Mesenquimais , Neovascularização Fisiológica , Camundongos , Humanos , Animais , Neovascularização Fisiológica/fisiologia , Tecido Adiposo , Neovascularização Patológica , Isquemia/terapia , Modelos Animais de Doenças , Membro Posterior/irrigação sanguínea
4.
Circulation ; 146(4): 316-335, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35762356

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are monoclonal antibodies used to activate the immune system against tumor cells. Despite therapeutic benefits, ICIs have the potential to cause immune-related adverse events such as myocarditis, a rare but serious side effect with up to 50% mortality in affected patients. Histologically, patients with ICI myocarditis have lymphocytic infiltrates in the heart, implicating T cell-mediated mechanisms. However, the precise pathological immune subsets and molecular changes in ICI myocarditis are unknown. METHODS: To identify immune subset(s) associated with ICI myocarditis, we performed time-of-flight mass cytometry on peripheral blood mononuclear cells from 52 individuals: 29 patients with autoimmune adverse events (immune-related adverse events) on ICI, including 8 patients with ICI myocarditis, and 23 healthy control subjects. We also used multiomics single-cell technology to immunophenotype 30 patients/control subjects using single-cell RNA sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes by sequencing with feature barcoding for surface marker expression confirmation. To correlate between the blood and the heart, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing on MRL/Pdcd1-/- (Murphy Roths large/programmed death-1-deficient) mice with spontaneous myocarditis. RESULTS: Using these complementary approaches, we found an expansion of cytotoxic CD8+ T effector cells re-expressing CD45RA (Temra CD8+ cells) in patients with ICI myocarditis compared with control subjects. T-cell receptor sequencing demonstrated that these CD8+ Temra cells were clonally expanded in patients with myocarditis compared with control subjects. Transcriptomic analysis of these Temra CD8+ clones confirmed a highly activated and cytotoxic phenotype. Longitudinal study demonstrated progression of these Temra CD8+ cells into an exhausted phenotype 2 months after treatment with glucocorticoids. Differential expression analysis demonstrated elevated expression levels of proinflammatory chemokines (CCL5/CCL4/CCL4L2) in the clonally expanded Temra CD8+ cells, and ligand receptor analysis demonstrated their interactions with innate immune cells, including monocytes/macrophages, dendritic cells, and neutrophils, as well as the absence of key anti-inflammatory signals. To complement the human study, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing in Pdcd1-/- mice with spontaneous myocarditis and found analogous expansions of cytotoxic clonal effector CD8+ cells in both blood and hearts of such mice compared with controls. CONCLUSIONS: Clonal cytotoxic Temra CD8+ cells are significantly increased in the blood of patients with ICI myocarditis, corresponding to an analogous increase in effector cytotoxic CD8+ cells in the blood/hearts of Pdcd1-/- mice with myocarditis. These expanded effector CD8+ cells have unique transcriptional changes, including upregulation of chemokines CCL5/CCL4/CCL4L2, which may serve as attractive diagnostic/therapeutic targets for reducing life-threatening cardiac immune-related adverse events in ICI-treated patients with cancer.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Miocardite , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Epitopos/efeitos adversos , Humanos , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Camundongos , Miocardite/metabolismo
5.
Biol Chem ; 403(2): 231-241, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34957734

RESUMO

Thrombosis has long been reported as a potentially deadly complication of respiratory viral infections and has recently received much attention during the global coronavirus disease 2019 pandemic. Increased risk of myocardial infarction has been reported during active infections with respiratory viruses, including influenza and severe acute respiratory syndrome coronavirus 2, which persists even after the virus has cleared. These clinical observations suggest an ongoing interaction between these respiratory viruses with the host's coagulation and immune systems that is initiated at the time of infection but may continue long after the virus has been cleared. In this review, we discuss the epidemiology of viral-associated myocardial infarction, highlight recent clinical studies supporting a causal connection, and detail how the virus' interaction with the host's coagulation and immune systems can potentially mediate arterial thrombosis.


Assuntos
COVID-19 , Influenza Humana , Trombose , Humanos , Inflamação , Influenza Humana/complicações , SARS-CoV-2 , Trombose/complicações
6.
J Mol Cell Cardiol ; 160: 121-127, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303670

RESUMO

Immune checkpoint inhibitors (ICI) have changed the landscape of cancer therapy, but their use carries a high risk of cardiac immune related adverse events (iRAEs). With the expanding utilization of ICI therapy, there is a growing need to understand the underlying mechanisms behind their anti-tumor activity as well as their immune-mediated toxicities. In this review, we will focus on clinical characteristics and immune pathways of ICI cardiotoxicity, with an emphasis on single-cell technologies used to gain insights in this field. We will focus on three key areas of ICI-mediated immune pathways, including the anti-tumor immune response, the augmentation of the immune response by ICIs, and the pathologic "autoimmune" response in some individuals leading to immune-mediated toxicity, as well as local factors in the myocardial immune environment predisposing to autoimmunity. Discerning the underlying mechanisms of these immune pathways is necessary to inform the development of targeted therapies for ICI cardiotoxicities and reduce treatment related morbidity and mortality.


Assuntos
Antineoplásicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Aterosclerose/induzido quimicamente , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/métodos , Miocardite/induzido quimicamente , Pericardite/induzido quimicamente , Vasculite/induzido quimicamente , Animais , Arritmias Cardíacas/imunologia , Aterosclerose/imunologia , Autoimunidade/efeitos dos fármacos , Cardiotoxicidade/imunologia , Humanos , Camundongos , Miocardite/imunologia , Pericardite/imunologia , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/imunologia , Fatores de Risco , Resultado do Tratamento , Vasculite/imunologia
7.
Prev Med ; 138: 106155, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32473271

RESUMO

We examined associations of diet, physical activity, cigarette smoking, and body mass index (BMI), separately and as a cumulative lifestyle score, with incident hospitalized HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). This analysis included 40,095 postmenopausal women in the Women's Health Initiative clinical trial and observational studies, aged 50-79 years and without self-reported HF at baseline. A healthy lifestyle score (HLS) was developed, in which women received 1 point for each healthy lifestyle. A weighted HLS was also created to examine the independent magnitude of each of the lifestyle factors in HF subtypes. Trained adjudicators determined cases of incident hospitalized HF, HFpEF, HFrEF through March 2018. Multiple variable Cox regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CI). During a mean follow-up period of 14.5 years, 659 incident HFrEF and 1276 HFpEF cases were documented. Across unweighted HLS of 0 (referent), 1, 2, 3, and 4, multivariable adjusted HRs (95% CI) for HFrEF were 1.00, 0.52 (0.38, 0.71), 0.40 (0.29, 0.56), 0.33 (0.23, 0.48), and 0.33 (0.19, 0.56) (P-trend = 0.03) and for HFpEF were 1.00, 0.47 (0.37, 0.59), 0.39 (0.30, 0.49), 0.26 (0.20, 0.34), and 0.23 (0.15, 0.35) (P-trend < 0.001). Results were similar for the weighted HLS. Our findings suggest that following a healthy lifestyle pattern is associated with lower risks of HFpEF and HFrEF among postmenopausal women.


Assuntos
Insuficiência Cardíaca , Feminino , Estilo de Vida Saudável , Insuficiência Cardíaca/epidemiologia , Humanos , Pós-Menopausa , Prognóstico , Fatores de Risco , Volume Sistólico , Saúde da Mulher
8.
Curr Cardiol Rep ; 22(5): 32, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32318865

RESUMO

PURPOSE OF REVIEW: Coronavirus disease of 2019 (COVID-19) is a cause of significant morbidity and mortality worldwide. While cardiac injury has been demonstrated in critically ill COVID-19 patients, the mechanism of injury remains unclear. Here, we review our current knowledge of the biology of SARS-CoV-2 and the potential mechanisms of myocardial injury due to viral toxicities and host immune responses. RECENT FINDINGS: A number of studies have reported an epidemiological association between history of cardiac disease and worsened outcome during COVID infection. Development of new onset myocardial injury during COVID-19 also increases mortality. While limited data exist, potential mechanisms of cardiac injury include direct viral entry through the angiotensin-converting enzyme 2 (ACE2) receptor and toxicity in host cells, hypoxia-related myocyte injury, and immune-mediated cytokine release syndrome. Potential treatments for reducing viral infection and excessive immune responses are also discussed. COVID patients with cardiac disease history or acquire new cardiac injury are at an increased risk for in-hospital morbidity and mortality. More studies are needed to address the mechanism of cardiotoxicity and the treatments that can minimize permanent damage to the cardiovascular system.


Assuntos
Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Cardiopatias/complicações , Cardiopatias/imunologia , Cardiopatias/virologia , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus , COVID-19 , Infecções por Coronavirus/terapia , Citocinas/imunologia , Humanos , Hipóxia/patologia , Miócitos Cardíacos/patologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/terapia , SARS-CoV-2
9.
Curr Cardiol Rep ; 22(5): 36, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32405913

RESUMO

It has been pointed out that the second paragraph of the section "Treatments for SARS-CoV-2 Infection" contains an error. The original article has been corrected.

11.
Stem Cells ; 35(8): 1994-2000, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28600830

RESUMO

Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced PSCs (hiPSCs), have great potential as an unlimited donor source for cell-based therapeutics. The risk of teratoma formation from residual undifferentiated cells, however, remains a critical barrier to the clinical application of these cells. Herein, we describe external beam radiation therapy (EBRT) as an attractive option for the treatment of this iatrogenic growth. We present evidence that EBRT is effective in arresting growth of hESC-derived teratomas in vivo at day 28 post-implantation by using a microCT irradiator capable of targeted treatment in small animals. Within several days of irradiation, teratomas derived from injection of undifferentiated hESCs and hiPSCs demonstrated complete growth arrest lasting several months. In addition, EBRT reduced reseeding potential of teratoma cells during serial transplantation experiments, requiring irradiated teratomas to be seeded at 1 × 103 higher doses to form new teratomas. We demonstrate that irradiation induces teratoma cell apoptosis, senescence, and growth arrest, similar to established radiobiology mechanisms. Taken together, these results provide proof of concept for the use of EBRT in the treatment of existing teratomas and highlight a strategy to increase the safety of stem cell-based therapies. Stem Cells 2017;35:1994-2000.


Assuntos
Células-Tronco Pluripotentes/patologia , Radiação Ionizante , Teratoma/radioterapia , Apoptose/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Humanos , Células-Tronco Pluripotentes/efeitos da radiação , Teratoma/patologia
14.
J Nucl Cardiol ; 25(6): 2116, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28755080

RESUMO

Reference 12 of the original editorial was cited in error. The correct reference is: Mohy-ud-Din H, et al. Quantification of intramyocardial blood volume with 99mTc-RBC SPECT-CT imaging: A preclinical study. J Nucl Cardiol 2017;1-16.

15.
J Nucl Cardiol ; 25(6): 2112-2115, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-28721646

RESUMO

Although coronary microvascular disease is now a well-recognized entity that is associated with significant morbidity and mortality, current non-invasive strategies cannot differentiate between coronary microvascular disease (CMD) and obstructive epicardial stenosis. While the evaluation of intramyocardial blood volume as a surrogate measure for microvascular health may have limited sensitivity in early-stage disease, this strategy does enable the diagnosis of CMD in the presence of concurrent epicardial disease, bringing us one step further toward improving the management of this disease. Herein, we discuss the advantages and limitations of current non-invasive measures of CMD and the need for further investment in bringing these technologies to the bedside.


Assuntos
Volume Sanguíneo , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Microcirculação , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Cães , Feminino
16.
J Nucl Cardiol ; 24(5): 1803-1809, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28185234

RESUMO

Stem cell therapy holds great promise for the repair and regeneration of damaged myocardium. Disappointing results from recent large-scale randomized trials using adult stem cells, however, have led some to question the efficacy of this new therapeutic. Because most clinical stem cell trials have not incorporated molecular imaging to track cell fate, it may be premature to abandon this approach. Herein, we will review how multimodality imaging can be incorporated into cardiac regenerative therapy to facilitate the translation of stem cell therapy.


Assuntos
Imagem Multimodal , Isquemia Miocárdica/terapia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco , Animais , Humanos , Miocárdio/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Regeneração , Medicina Regenerativa , Células-Tronco/citologia , Tomografia Computadorizada de Emissão de Fóton Único , Pesquisa Translacional Biomédica
17.
Circulation ; 132(8): 762-771, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26304668

RESUMO

BACKGROUND: Human induced pluripotent stem cells (iPSCs) are attractive candidates for therapeutic use, with the potential to replace deficient cells and to improve functional recovery in injury or disease settings. Here, we test the hypothesis that human iPSC-derived cardiomyocytes (iPSC-CMs) can secrete cytokines as a molecular basis to attenuate adverse cardiac remodeling after myocardial infarction. METHODS AND RESULTS: Human iPSCs were generated from skin fibroblasts and differentiated in vitro with a small molecule-based protocol. Troponin(+) iPSC-CMs were confirmed by immunohistochemistry, quantitative polymerase chain reaction, fluorescence-activated cell sorting, and electrophysiological measurements. Afterward, 2×10(6) iPSC-CMs derived from a cell line transduced with a vector expressing firefly luciferase and green fluorescent protein were transplanted into adult NOD/SCID mice with acute left anterior descending artery ligation. Control animals received PBS injection. Bioluminescence imaging showed limited engraftment on transplantation into ischemic myocardium. However, magnetic resonance imaging of animals transplanted with iPSC-CMs showed significant functional improvement and attenuated cardiac remodeling compared with PBS-treated control animals. To understand the underlying molecular mechanism, microfluidic single-cell profiling of harvested iPSC-CMs, laser capture microdissection of host myocardium, and in vitro ischemia stimulation were used to demonstrate that the iPSC-CMs could release significant levels of proangiogenic and antiapoptotic factors in the ischemic microenvironment. CONCLUSIONS: Transplantation of human iPSC-CMs into an acute mouse myocardial infarction model can improve left ventricular function and attenuate cardiac remodeling. Because of limited engraftment, most of the effects are possibly explained by paracrine activity of these cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Microfluídica/métodos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/fisiologia , Análise de Célula Única/métodos , Transplante de Células-Tronco , Animais , Linhagem Celular , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Infarto do Miocárdio/patologia , Distribuição Aleatória
18.
J Nucl Cardiol ; 23(4): 783-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189171

RESUMO

Molecular probes provide imaging signal and contrast for the visualization, characterization, and measurement of biological processes at the molecular level. These probes can be designed to target the cell or tissue of interest and must be retained at the imaging site until they can be detected by the appropriate imaging modality. In this article, we will discuss the basic design of molecular probes, differences among the various types of probes, and general strategies for their evaluation of cardiovascular disease.


Assuntos
Angiografia/métodos , Técnicas de Imagem Cardíaca/métodos , Doenças Cardiovasculares/diagnóstico por imagem , Aumento da Imagem/métodos , Imagem Molecular/métodos , Técnicas de Sonda Molecular , Humanos , Sondas Moleculares
20.
Circulation ; 127(16): 1677-91, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23519760

RESUMO

BACKGROUND: Cardiotoxicity is a leading cause for drug attrition during pharmaceutical development and has resulted in numerous preventable patient deaths. Incidents of adverse cardiac drug reactions are more common in patients with preexisting heart disease than the general population. Here we generated a library of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with various hereditary cardiac disorders to model differences in cardiac drug toxicity susceptibility for patients of different genetic backgrounds. METHODS AND RESULTS: Action potential duration and drug-induced arrhythmia were measured at the single cell level in hiPSC-CMs derived from healthy subjects and patients with hereditary long QT syndrome, familial hypertrophic cardiomyopathy, and familial dilated cardiomyopathy. Disease phenotypes were verified in long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy hiPSC-CMs by immunostaining and single cell patch clamp. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and the human ether-a-go-go-related gene expressing human embryonic kidney cells were used as controls. Single cell PCR confirmed expression of all cardiac ion channels in patient-specific hiPSC-CMs as well as hESC-CMs, but not in human embryonic kidney cells. Disease-specific hiPSC-CMs demonstrated increased susceptibility to known cardiotoxic drugs as measured by action potential duration and quantification of drug-induced arrhythmias such as early afterdepolarizations and delayed afterdepolarizations. CONCLUSIONS: We have recapitulated drug-induced cardiotoxicity profiles for healthy subjects, long QT syndrome, hypertrophic cardiomyopathy, and dilated cardiomyopathy patients at the single cell level for the first time. Our data indicate that healthy and diseased individuals exhibit different susceptibilities to cardiotoxic drugs and that use of disease-specific hiPSC-CMs may predict adverse drug responses more accurately than the standard human ether-a-go-go-related gene test or healthy control hiPSC-CM/hESC-CM screening assays.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica Familiar/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Predisposição Genética para Doença , Células-Tronco Pluripotentes Induzidas/citologia , Síndrome do QT Longo/genética , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica Familiar/patologia , Diferenciação Celular , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/fisiologia , Tamanho Celular , Cisaprida/toxicidade , Corpos Embrioides/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica , Células HEK293/efeitos dos fármacos , Células HEK293/fisiologia , Humanos , Técnicas In Vitro , Canais Iônicos/biossíntese , Canais Iônicos/genética , Rim/citologia , Rim/embriologia , Síndrome do QT Longo/patologia , Miócitos Cardíacos/fisiologia , Miofibrilas/ultraestrutura , Nicorandil/toxicidade , Técnicas de Patch-Clamp , Quinazolinas/toxicidade , Verapamil/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA