RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe coronavirus disease 2019 (COVID-19) in a small proportion of infected individuals. The immune system plays an important role in the defense against SARS-CoV-2, but our understanding of the cellular immune parameters that contribute to severe COVID-19 disease is incomplete. Here, we show that populations of effector γδ T cells are associated with COVID-19 in unvaccinated patients with acute disease. We found that circulating CD27neg CD45RA+ CX3CR1+ Vδ1effector cells expressing Granzymes (Gzms) were enriched in COVID-19 patients with acute disease. Moreover, higher frequencies of GzmB+ Vδ2+ T cells were observed in acute COVID-19 patients. SARS-CoV-2 infection did not alter the γδ T cell receptor repertoire of either Vδ1+ or Vδ2+ subsets. Our work demonstrates an association between effector populations of γδ T cells and acute COVID-19 in unvaccinated individuals.
Assuntos
COVID-19 , Subpopulações de Linfócitos T , Humanos , Doença Aguda , Receptores de Antígenos de Linfócitos T gama-delta , SARS-CoV-2RESUMO
Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Austrália , Imunoglobulina G , Povos Indígenas , Imunidade , Anticorpos AntiviraisRESUMO
In-depth understanding of human T-cell-mediated immunity in coronavirus disease 2019 (COVID-19) is needed if we are to optimize vaccine strategies and immunotherapies. Identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell epitopes and generation of peptide-human leukocyte antigen (peptide-HLA) tetramers facilitate direct ex vivo analyses of SARS-CoV-2-specific T cells and their T-cell receptor (TCR) repertoires. We utilized a combination of peptide prediction and in vitro peptide stimulation to validate novel SARS-CoV-2 epitopes restricted by HLA-A*24:02, one of the most prominent HLA class I alleles, especially in Indigenous and Asian populations. Of the peptides screened, three spike-derived peptides generated CD8+ IFNγ+ responses above background, S1208-1216 (QYIKWPWYI), S448-456 (NYNYLYRLF) and S193-201 (VFKNIDGYF), with S1208 generating immunodominant CD8+ IFNγ+ responses. Using peptide-HLA-I tetramers, we performed direct ex vivo tetramer enrichment for HLA-A*24:02-restricted CD8+ T cells in COVID-19 patients and prepandemic controls. The precursor frequencies for HLA-A*24:02-restricted epitopes were within the range previously observed for other SARS-CoV-2 epitopes for both COVID-19 patients and prepandemic individuals. Naïve A24/SARS-CoV-2-specific CD8+ T cells increased nearly 7.5-fold above the average precursor frequency during COVID-19, gaining effector and memory phenotypes. Ex vivo single-cell analyses of TCRαß repertoires found that the A24/S448+ CD8+ T-cell TCRαß repertoire was driven by a common TCRß chain motif, whereas the A24/S1208+ CD8+ TCRαß repertoire was diverse across COVID-19 patients. Our study provides an in depth characterization and important insights into SARS-CoV-2-specific CD8+ T-cell responses associated with a prominent HLA-A*24:02 allomorph. This contributes to our knowledge on adaptive immune responses during primary COVID-19 and could be exploited in vaccine or immunotherapeutic approaches.
Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19 , Antígeno HLA-A24 , Receptores de Antígenos de Linfócitos T/imunologia , COVID-19/imunologia , Humanos , SARS-CoV-2RESUMO
Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.
Assuntos
Envelhecimento , Regulação da Expressão Gênica/imunologia , Proteínas de Ligação à Região de Interação com a Matriz , Adulto , Idoso , Envelhecimento/imunologia , Envelhecimento/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/biossíntese , Proteínas de Ligação à Região de Interação com a Matriz/imunologia , Pessoa de Meia-Idade , Especificidade de Órgãos/fisiologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Timócitos/citologia , Timócitos/imunologiaRESUMO
Epstein-Barr virus (EBV) is one of the most common viruses in humans, capable of causing life-threatening infections and cancers in immunocompromised individuals. Although CD8+ T cells provide key protection against EBV, the persistence and dynamics of specific T-cell receptor (TCR) clones during immunosuppression in transplant patients is largely unknown. For the first time, we used a novel single-cell TCRαß multiplex-nested reverse transcriptase PCR to dissect TCRαß clonal diversity within GLCTLVAML (GLC)-specific CD8+ T cells in healthy individuals and immunocompromised lung transplant recipients. The GLC peptide presented by HLA-A*02:01 is one of the most immunogenic T-cell targets from the EBV proteome. We found that the GLC-specific TCRαß repertoire was heavily biased toward TRAV5 and encompassed five classes of public TCRαßs, suggesting that these clonotypes are preferentially utilized following infection. We identified that a common TRAV5 was diversely paired with different TRAJ and TRBV/TRBJ genes, in both immunocompetent and immunocompromised individuals, with an average of 12 different TCRαß clonotypes/donor. Moreover, pre-transplant GLC-specific TCRαß repertoires were relatively stable over 1 year post transplant under immunosuppression in the absence or presence of EBV reactivation. In addition, we provide the first evidence of early GLC-specific CD8+ T cells at 87 days post transplant, which preceded clinical EBV detection at 242 days in an EBV-seronegative patient receiving a lung allograft from an EBV-seropositive donor. This was associated with a relatively stable TCRαß repertoire after CD8+ T-cell expansion. Our findings provide insights into the composition and temporal dynamics of the EBV-specific TCRαß repertoire in immunocompromised transplant patients and suggest that the early detection of EBV-specific T cells might be a predictor of ensuing EBV blood viremia.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 4/imunologia , Terapia de Imunossupressão , Transplante de Pulmão , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transplantados , Aloenxertos/imunologia , Sequência de Aminoácidos , DNA Viral/sangue , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Humanos , Peptídeos/metabolismo , Doadores de Tecidos , Ativação ViralRESUMO
Objectives: Amino acid variations across more than 30 immunoglobulin (Ig) allotypes may introduce structural changes that influence recognition by anti-Ig detection reagents, consequently confounding interpretation of antibody responses, particularly in genetically diverse cohorts. Here, we assessed a panel of commercial monoclonal anti-IgG1 clones for capacity to universally recognise two dominant IgG1 haplotypes (G1m-1,3 and G1m1,17). Methods: Four commercial monoclonal anti-human IgG1 clones were assessed via ELISAs and multiplex bead-based assays for their ability to bind G1m-1,3 and G1m1,17 IgG1 variants. Detection antibodies were validated against monoclonal IgG1 allotype standards and tested for capacity to recognise antigen-specific plasma IgG1 from G1m-1,3 and G1m1,17 homozygous and heterozygous SARS-CoV-2 BNT162b2 vaccinated (n = 28) and COVID-19 convalescent (n = 44) individuals. An Fc-specific pan-IgG detection antibody corroborated differences between hinge- and Fc-specific anti-IgG1 responses. Results: Hinge-specific anti-IgG1 clone 4E3 preferentially bound G1m1,17 compared to G1m-1,3 IgG1. Consequently, SARS-CoV-2 Spike-specific IgG1 levels detected in G1m1,17/G1m1,17 BNT162b2 vaccinees appeared 9- to 17-fold higher than in G1m-1,3/G1m-1,3 vaccinees. Fc-specific IgG1 and pan-IgG detection antibodies equivalently bound G1m-1,3 and G1m1,17 IgG1 variants, and detected comparable Spike-specific IgG1 levels between haplotypes. IgG1 responses against other human coronaviruses and influenza were similarly poorly detected by 4E3 anti-IgG1 in G1m-1,3/G1m-1,3 subjects. Conclusion: Anti-IgG1 clone 4E3 confounds assessment of antibody responses in clinical cohorts owing to bias towards detection of G1m1,17 IgG1 variants. Validation of anti-Ig clones should include evaluation of binding to relevant antibody variants, particularly as the role of immunogenetics upon humoral immunity is increasingly explored in diverse populations.
RESUMO
Objectives: Influenza causes significant morbidity and mortality, especially in high-risk populations. Although current vaccination regimens are the best method to combat annual influenza disease, vaccine efficacy can be low in high-risk groups, such as haematopoietic stem cell transplant (HSCT) recipients. Methods: We comprehensively assessed humoral immunity, antibody landscapes, systems serology and influenza-specific B-cell responses, together with their phenotypes and isotypes, to the inactivated influenza vaccine (IIV) in HSCT recipients in comparison to healthy controls. Results: Inactivated influenza vaccine significantly increased haemagglutination inhibition (HAI) titres in HSCT recipients, similar to healthy controls. Systems serology revealed increased IgG1 and IgG3 antibody levels towards the haemagglutinin (HA) head, but not to neuraminidase, nucleoprotein or HA stem. IIV also increased frequencies of total, IgG class-switched and CD21loCD27+ influenza-specific B cells, determined by HA probes and flow cytometry. Strikingly, 40% of HSCT recipients had markedly higher antibody responses towards A/H3N2 vaccine strain than healthy controls and showed cross-reactivity to antigenically drifted A/H3N2 strains by antibody landscape analysis. These superior humoral responses were associated with a greater time interval after HSCT, while multivariant analyses revealed the importance of pre-existing immune memory. Conversely, in HSCT recipients who did not respond to the first dose, the second IIV dose did not greatly improve their humoral response, although 50% of second-dose patients reached a seroprotective HAI titre for at least one of vaccine strains. Conclusions: Our study demonstrates efficient, although time-dependent, immune responses to IIV in HSCT recipients, and provides insights into influenza vaccination strategies targeted to immunocompromised high-risk groups.
RESUMO
Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
Assuntos
COVID-19 , Gravidez , Feminino , Humanos , SARS-CoV-2 , Células Matadoras Naturais , Linfócitos T CD8-Positivos , AnticorposRESUMO
Older individuals exhibit a diminished ability to respond to and clear respiratory pathogens and, as such, experience a higher rate of lung infections with a higher mortality rate. It is unclear why respiratory pathogens impact older people disproportionately. Using human lung tissue from donors aged 22-68 years, we assessed how the immune cell landscape in lungs changes throughout life and investigated how these immune cells respond following in vitro exposure to influenza virus and SARS-CoV-2, two clinically relevant respiratory viruses. While the frequency of most immune cell subsets profiled in the human lung remained stable with age, memory CD8+ T cells declined, with the tissue-resident memory (Trm) CD8+ T-cell subset being most susceptible to age-associated attrition. Infection of lung tissue with influenza virus resulted in an age-associated attenuation in the antiviral immune response, with aged donors producing less type I interferon (IFN), GM-CSF and IFNγ, the latter correlated with a reduction of IFNγ-producing memory CD8+ T cells. In contrast, irrespective of donor age, exposure of human lung cells to SARS-CoV-2, a pathogen for which all donors were immunologically naïve, did not trigger activation of local immune cells and did not result in the induction of an early IFN response. Our findings show that the attrition of tissue-bound pathogen-specific Trm in the lung that occurs with advanced age, or their absence in immunologically naïve individuals, results in a diminished early antiviral immune response which creates a window of opportunity for respiratory pathogens to gain a greater foothold.
RESUMO
OBJECTIVES: As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. METHODS: We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. RESULTS: Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT. CONCLUSION: Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.
RESUMO
INTRODUCTION: Endothelium dysfunction and decrease of incretin effects occur early in type 2 diabetes mellitus and these changes contribute to diabetic cardiovascular complications such as atherosclerosis, thick intima-media, coronary, and peripheral arterial diseases. In patients with diabetes, the femoral artery is a site of a high incidence of injury in peripheral vascular diseases, and atherosclerotic changes may appear earlier in the femoral artery compared to the carotid artery. This study was conducted to determine the prevalence of increased femoral artery intima-media thickness (IMT) and atherosclerotic plaque and their correlation with serum glucagon-like peptide-1 (GLP-1) levels in newly-diagnosed patients with type 2 diabetes mellitus. MATERIALS AND METHODS: A cross-sectional study was conducted on 332 patients with nT2D in the National Endocrinology Hospital, Vietnam from January 2015 to May 2018. IMT was measured by Doppler ultrasound and GLP-1 by enzyme-linked immunosorbent assay (ELISA). All data were analyzed with SPSS version 26 for Windows (SPSS Inc, Chicago, IL). RESULTS: Prevalence of thick femoral artery IMT and atherosclerotic plaque was 38.2 and 22.3%, respectively. There was a relationship between IMT and age, waist to hip ratio (WHR), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting GLP-1, high sensitive CRP (hsCRP) and 24-hour microalbuminuria secretion (24-h MAUS). The fasting serum GLP-1 (fGLP-1) levels were reduced significantly in patients with thickness and atherosclerosis femoral artery (p = 0.001). After adjusting with other related factors, namely, DBP and estimated glomerular filtration rate (eGFR), whilst hsCRP and 24-h MAUS showed a significantly positive correlation to IMT (Standardized B and p of 0.242, 0.004 and 0.178, 0.043, respectively), fGLP-1 showed a significantly negative correlation to IMT (Standardized B = -0.288, p = 0.001). CONCLUSION: Among n2TD, the percentage for femoral artery thick IMT and atherosclerosis was 38.2% and 22.3% respectively, and serum GLP-1 was negatively correlated with thick IMT and atherosclerosis.
RESUMO
OBJECTIVES: A fundamental question in influenza research is whether antibody titre decline upon successive exposure to variant strains is consequent to recall of cross-reactive memory B cells that competitively inhibit naive B-cell responses. In connection, it is not clear whether naive and memory B cells remain phenotypically distinct acutely after activation such that they may be distinguished ex vivo. METHODS: Here, we first compared the capacity of anti-Ig and Toll-like-receptor (TLR) 7/8 and TLR9 agonists (R848 and CpG) to augment human B-cell differentiation induced by IL-21 and sCD40L. The conditions that induced optimal differentiation were then used to compare the post-activation phenotype of sort-purified naive and memory B-cell subsets by FACS and antibody-secreting cell (ASC) ELISPOT. RESULTS: Sort-purified naive and memory B cells underwent robust plasmablast and ASC formation when stimulated with R848, but not CpG, and co-cultured with monocytes. This coincided with increased IL-1ß and IL-6 production when B cells were co-cultured with monocytes and stimulated with R848, but not CpG. Naive B cells underwent equivalent ASC generation, but exhibited less class-switch and modulation of CD27, CD38 and CD20 expression than memory B cells after stimulation with R848 and monocytes for 6 days. CONCLUSION: Stimulation with R848, IL-21 and sCD40L in the presence of monocytes induces robust differentiation and ASC generation from both naive and memory B-cells. However, naive and memory B cells retain key phenotypic differences after activation that may facilitate ex vivo discrimination and better characterisation of acute responses to variant antigens.
RESUMO
BACKGROUND: Although γδ T cells comprise up to 10% of human peripheral blood T cells, questions remain regarding their role in disease states and T-cell receptor (TCR) clonal expansions. We dissected anti-viral functions of human γδ T cells towards influenza viruses and defined influenza-reactive γδ TCRs in the context of γδ-TCRs across the human lifespan. METHODS: We performed 51Cr-killing assay and single-cell time-lapse live video microscopy to define mechanisms underlying γδ T-cell-mediated killing of influenza-infected targets. We assessed cytotoxic profiles of γδ T cells in influenza-infected patients and IFN-γ production towards influenza-infected lung epithelial cells. Using single-cell RT-PCR, we characterised paired TCRγδ clonotypes for influenza-reactive γδ T cells in comparison with TCRs from healthy neonates, adults, elderly donors and tissues. RESULTS: We provide the first visual evidence of γδ T-cell-mediated killing of influenza-infected targets and show distinct features to those reported for CD8+ T cells. γδ T cells displayed poly-cytotoxic profiles in influenza-infected patients and produced IFN-γ towards influenza-infected cells. These IFN-γ-producing γδ T cells were skewed towards the γ9δ2 TCRs, particularly expressing the public GV9-TCRγ, capable of pairing with numerous TCR-δ chains, suggesting their significant role in γδ T-cell immunity. Neonatal γδ T cells displayed extensive non-overlapping TCRγδ repertoires, while adults had enriched γ9δ2-pairings with diverse CDR3γδ regions. Conversely, the elderly showed distinct γδ-pairings characterised by large clonal expansions, a profile also prominent in adult tissues. CONCLUSION: Human TCRγδ repertoire is shaped by age, tissue compartmentalisation and the individual's history of infection, suggesting that these somewhat enigmatic γδ T cells indeed respond to antigen challenge.
RESUMO
The human lung harbors a large population of resident memory T cells (Trm cells). These cells are perfectly positioned to mediate rapid protection against respiratory pathogens such as influenza virus, a highly contagious respiratory pathogen that continues to be a major public health burden. Animal models show that influenza-specific lung CD8+ Trm cells are indispensable for crossprotection against pulmonary infection with different influenza virus strains. However, it is not known whether influenza-specific CD8+ Trm cells present within the human lung have the same critical role in modulating the course of the disease. Here, we showed that human lung contains a population of CD8+ Trm cells that are highly proliferative and have polyfunctional progeny. We observed that different influenza virus-specific CD8+ T cell specificities differentiated into Trm cells with varying efficiencies and that the size of the influenza-specific CD8+ T cell population persisting in the lung directly correlated with the efficiency of differentiation into Trm cells. To our knowledge, we provide the first ex vivo dissection of paired T cell receptor (TCR) repertoires of human influenza-specific CD8+ Trm cells. Our data reveal diverse TCR profiles within the human lung Trm cells and a high degree of clonal sharing with other CD8+ T cell populations, a feature important for effective T cell function and protection against the generation of viral-escape mutants.
Assuntos
Linfócitos T CD8-Positivos/citologia , Memória Imunológica , Influenza Humana/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunidade Adaptativa , Adulto , Idoso , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular , Proliferação de Células , Humanos , Leucócitos Mononucleares/citologia , Pulmão/citologia , Pulmão/metabolismo , Pessoa de Meia-Idade , Fenótipo , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Adulto JovemRESUMO
The Wilms' tumor 1 (WT1) antigen is expressed in solid and hematological malignancies, but not healthy tissues, making it a promising target for cancer immunotherapies. Immunodominant WT1 epitopes, the native HLA-A2/WT1126-134 (RMFPNAPYL) (HLA-A2/RMFPNAPYL epitope (WT1A)) and its modified variant YMFPNAPYL (HLA-A2/YMFPNAPYL epitope (WT1B)), can induce WT1-specific CD8+ T cells, although WT1B is more stably bound to HLA-A*02:01. Here, to further determine the benefits of those two targets, we assessed the naive precursor frequencies; immunogenicity and cross-reactivity of CD8+ T cells directed toward these two WT1 epitopes. Ex vivo naive WT1A- and WT1B-specific CD8+ T cells were detected in healthy HLA-A*02:01+ individuals with comparable precursor frequencies (1 in 105-106) to other naive CD8+ T-cell pools (for example, A2/HIV-Gag77-85), but as expected, ~100 × lower than those found in memory populations (influenza, A2/M158-66; EBV, A2/BMLF1280-288). Importantly, only WT1A-specific naive precursors were detected in HLA-A2.1 mice. To further assess the immunogenicity and recruitment of CD8+ T cells responding to WT1A and WT1B, we immunized HLA-A2.1 mice with either peptide. WT1A immunization elicited numerically higher CD8+ T-cell responses to the native tumor epitope following re-stimulation, although both regimens produced functionally similar responses toward WT1A via cytokine analysis and CD107a expression. Interestingly, however, WT1B immunization generated cross-reactive CD8+ T-cell responses to WT1A and could be further expanded by WT1A peptide revealing two distinct populations of single- and cross-reactive WT1A+CD8+ T cells with unique T-cell receptor-αß gene signatures. Therefore, although both epitopes are immunogenic, the clinical benefits of WT1B vaccination remains debatable and perhaps both peptides may have separate clinical benefits as treatment targets.
RESUMO
BACKGROUND: Both seasonal and novel avian influenza viruses can result in severe infections requiring hospitalization. Anti-influenza antibodies (Abs) with Fc-mediated effector functions, such as Ab-dependent cellular cytotoxicity (ADCC), are of growing interest in control of influenza but have not previously been studied during severe human infections. As such, the objective of this study was to examine Fc-mediated Ab functions in humans hospitalized with influenza infection. METHODS: Serum Ab response was studied in subjects hospitalized with either pandemic H7N9 avian influenza virus in China (n = 18) or circulating seasonal influenza viruses in Melbourne, Australia (n = 16). Recombinant soluble Fc receptor dimer ELISAs, natural killer (NK) cell activation assays, and Ab-dependent killing assays with influenza-infected target cells were used to assess the Fc functionality of anti-influenza hemagglutinin (HA) Abs during severe human influenza infection. RESULTS: We found that the peak generation of Fc functional HA Abs preceded that of neutralizing Abs for both severe H7N9 and seasonal influenza infections. Subjects who succumbed to complications of H7N9 infection demonstrated reduced HA-specific Fc receptor-binding Abs (in magnitude and breadth) immediately prior to death compared with those who survived. Subjects who recovered from H7N9 and severe seasonal influenza infections demonstrated increased Fc receptor-binding Abs not only against the homologous infecting strain but against HAs from different influenza A subtypes. CONCLUSION: Collectively, survivors of severe influenza infection rapidly generate a functional Ab response capable of mediating ADCC against divergent influenza viruses. Broadly binding HA Abs with Fc-mediated functions may be a useful component of protective immunity to severe influenza infection. FUNDING: The National Health and Medical Research Council ([NHMRC] grants 1023294, 1041832, and 1071916), the Australian Department of Health, and the joint University of Melbourne/Fudan University International Research and Research Training Fund provided funding for this study.