Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 144: 212-224, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802232

RESUMO

In this work, the perovskite LaZnO3 was synthesized via sol-gel method and applied for photocatalytic treatment of sulfamethizole (SMZ) antibiotics under visible light activation. SMZ was almost completely degraded (99.2% ± 0.3%) within 4 hr by photocatalyst LaZnO3 at the optimal dosage of 1.1 g/L, with a mineralization proportion of 58.7% ± 0.4%. The efficient performance of LaZnO3 can be attributed to its wide-range light absorption and the appropriate energy band edge levels, which facilitate the formation of active agents such as ·O2-, h+, and ·OH. The integration of RP-HPLC/Q-TOF-MS and DFT-based computational techniques revealed three degradation pathways of SMZ, which were initiated by the deamination reaction at the aniline ring, the breakdown of the sulfonamide moieties, and a process known as Smile-type rearrangement and SO2 intrusion. Corresponding toxicity of SMZ and the intermediates were analyzed by quantitative structure activity relationship (QSAR), indicating the effectiveness of LaZnO3-based photocatalysis in preventing secondary pollution of the intermediates to the ecosystem during the degradation process. The visible-light-activated photocatalyst LaZnO3 exhibited efficient performance in the occurrence of inorganic anions and maintained high durability across multiple recycling tests, making it a promising candidate for practical antibiotic treatment.


Assuntos
Antibacterianos , Luz , Óxidos , Sulfametizol , Titânio , Poluentes Químicos da Água , Antibacterianos/química , Titânio/química , Óxidos/química , Sulfametizol/química , Poluentes Químicos da Água/química , Compostos de Cálcio/química , Catálise , Fotólise , Modelos Químicos
2.
Environ Res ; 212(Pt B): 113178, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35367427

RESUMO

In this study, activated carbon from corncobs was successfully synthesized by hydrothermal carbonization and hydrochemical activation at low temperatures, followed by pyrolysis. A developed method of hydrochemical activation of hydrochar that uses only small amounts of chemicals is a promising approach. After activation, the activator residues in the hydrothermal product can constantly act as a chemical activator during pyrolysis to form corncob-activated carbon (AHC-KOH), which had specific surface area of 965.028 m2/g and oxygenated functional groups of 0.3780 mmol/g, 31.67 and 4 times, respectively, of those of the inactivated sample. AHC-KOH was used to study the adsorption characteristics of methylene blue (MB). The MB adsorption efficiency of AHC-KOH was the highest at 489.560 mg/g, which was considerably higher than that of activated carbons produced from other biomasses. The isotherm equilibrium and adsorbent kinetics parameters of MB adsorption on AHC-KOH were also determined using the Langmuir isotherm model (R2 = 0.99) and pseudo-second-order kinetic model (R2 > 0.99). Thus, the results indicate that an inexpensive adsorbent produced from corncobs using the above method is a promising material for wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Cinética , Azul de Metileno/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Zea mays
3.
Environ Res ; 214(Pt 3): 113953, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934147

RESUMO

A popular approach to select optimal adsorbents is to perform parallel experiments on adsorbents based on an initially decided goal such as specified product purity, efficiency, or binding capacity. To screen optimal adsorbents, we focused on the max adsorption capacity of the candidates at equilibrium in this work because the adsorption capacity of each adsorbent is strongly dependent on certain conditions. A data-driven machine learning tool for predicting the max adsorption capacity (Qm) of 19 pharmaceutical compounds on 88 biochars was developed. The range of values of Qm (mean 48.29 mg/g) was remarkably large, with a high number of outliers and large variability. Modified biochars enhanced the Qm and surface area values compared with the original biochar, with a statistically significant difference (Chi-square value = 7.21-18.25, P < 0.005). K- nearest neighbors (KNN) was found to be the most optimal algorithm with a root mean square error (RMSE) of 23.48 followed by random forest and Cubist with RMSE of 26.91 and 29.56, respectively, whereas linear regression and regularization were the worst algorithms. KNN model achieved R2 of 0.92 and RMSE of 16.62 for the testing data. A web app was developed to facilitate the use of the KNN model, providing a reliable solution for saving time and money in unnecessary lab-scale adsorption experiments while selecting appropriate biochars for pharmaceutical adsorption.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Carvão Vegetal , Aprendizado de Máquina , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
4.
J Environ Manage ; 222: 378-384, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29870966

RESUMO

A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and used to investigate organic material and nutrient removal rate constants for wastewater treatment and establish a practical predictive model for use. For this purpose, the performance of multiple parameters was statistically evaluated during the process and predictive models were suggested. The measurement of the kinetic rate constant was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda, and Gold (LMG) analysis and Bayesian model averaging (BMA) method were employed for identifying the relative importance of variables and their optimal multiple regression (MR). The results showed that the first-order-PFR (M2) model did not fit the data (P > 0.05, and R2 < 0.5), whereas the first-order-CSTR (M1) model for the chemical oxygen demand (CODCr) and Monod-CSTR (M3) model for the CODCr and ammonium nitrogen (NH4-N) showed a high correlation with the experimental data (R2 > 0.5). The pollutant removal rates in the case of M1 were 0.19 m/d (CODCr) and those for M3 were 25.2 g/m2∙d for CODCr and 2.63 g/m2∙d for NH4-N. By applying a multi-variable linear regression method, the optimal empirical models were established for predicting the final effluent concentration of five days' biochemical oxygen demand (BOD5) and NH4-N. In general, the hydraulic loading rate was considered an important variable having a high value of relative importance, which appeared in all the optimal predictive models.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Áreas Alagadas , Teorema de Bayes , Análise da Demanda Biológica de Oxigênio , Cinética , Nitrogênio
5.
Environ Pollut ; 308: 119596, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716890

RESUMO

The aim of this study was to recover Sc as the main product and Fe as a by-product from Hungarian bauxite residue/red mud (RM) waste material by solvent extraction (SX). Moreover, a new technique was developed for the selective separation of Sc and Fe from real RM leachates. The presence of high Fe content (∼38%) in RM makes it difficult to recover Sc because of the similarity of their physicochemical properties. Pyrometallurgical and hydrometallurgical methods were applied to remove the Fe prior to SX. Two protocols based on organophosphorus compounds (OPCs) were proposed, and the main extractants were evaluated: bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and tributyl phosphate (TBP). The results showed that SX using diethyl ether and tri-n-octylamine (N235) was efficient in extracting Fe(III) from the HCl leachate as HFeC14. Over 97% of Sc was extracted by D2EHPA extractant under the following conditions; 0.05 mol/L of D2EHPA concentration, A/O phase ratio of 3:1, pH 0-1, 10 min of shaking time, and a temperature of 25 °C. Sc(OH)3 as a precipitate was efficiently obtained by stripping from the D2EHPA organic phase by 2.5 mol/L of NaOH with a stripping efficiency of 95%. In the TBP system, 99% of Sc was extracted under the following conditions: 12.5% vol of TBP, an A/O phase ratio of 3:1, 10 min of shaking time, and a temperature of 25 °C. The Sc contained in the TBP organic phase could be efficiently stripped by 1 mol/L of HCl with a stripping efficiency of 92.85%.


Assuntos
Compostos Férricos , Escândio , Óxido de Alumínio , Resíduos
6.
Environ Pollut ; 306: 119372, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533957

RESUMO

Multiwalled carbon nanotubes (MWCNTs) were oxidized using a mixture of H2SO4 and HNO3, and the oxidized MWCNTS were decorated with magnetite (Fe3O4). Finally, poly-N-isopropyl acrylamide-co-butyl acrylate (P-NIPAM) was added to obtain P-NIPAM/Fe/MWCNT nanocomposites. The nanosorbents were characterized by various techniques, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller analysis. The P-NIPAM/Fe/MWCNT nanocomposites exhibited increased surface hydrophobicity. Owing to their higher adsorption capacity, their kerosene removal efficiency was 95%; by contrast, the as-prepared, oxidized, and magnetite-decorated MWCNTs had removal efficiencies of 45%, 55%, and 68%, respectively. The P-NIPAM/Fe/MWCNT nanocomposites exhibited a sorbent capacity of 8.1 g/g for kerosene removal from water. The highest kerosene removal efficiency from water was obtained at a process time of 45 min, sorbent dose of 0.005 g, solution temperature of 40 °C, and pH 3.5. The P-NIPAM/Fe/MWCNTs showed excellent stability after four cycles of kerosene removal from water followed by regeneration. The reason may be the increase in the positive charge of the polymer at pH 3.5 and the increased adsorption affinity of the adsorbent toward the kerosene contaminant. The pseudo second-order model was found to be the most suitable model for studying the kinetics of the adsorption reaction.


Assuntos
Nanocompostos , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Resinas Acrílicas , Adsorção , Óxido Ferroso-Férrico/química , Concentração de Íons de Hidrogênio , Querosene , Cinética , Nanocompostos/química , Nanotubos de Carbono/química , Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
7.
Chemosphere ; 309(Pt 1): 136628, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181849

RESUMO

Adsorption in the continuous mode plays a significant role in wastewater treatment. In this study, Mimosa pigra-derived biochar modified with 2 M AlCl3 salt was used to pack a lab-scale column to eliminate PO43- from aqueous solutions. The influence of the operational factors, such as inlet PO43- concentration (25-100 mg/L), flow rate (6-18 mL/min), and biochar bed height (1.5-4.5 cm), on the breakthrough curve was evaluated. The kinetic models of Adam-Bohart and Yoon-Nelson were utilized to analyze the experimental results. The best conditions were determined to be the influent PO43- strength of 50 mg/L, injection speed of 6 mL/min, and column height of 4.5 cm. These results can be applied in the design of large-scale columns for the sequestration of PO43- from wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Águas Residuárias , Fosfatos , Carvão Vegetal , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Água
8.
J Hazard Mater ; 420: 126636, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280722

RESUMO

The quest for finding an effective photocatalyst for environmental remediation and treatment strategies is attracting considerable attentions from scientists. In this study, a new hybrid material, Cu0.5Mg0.5Fe2O4-TiO2, was designed and fabricated using coprecipitation and sol-gel approaches for degrading organic dyes in wastewater. The prepared hybrid materials were fully characterized using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results revealed that the Cu0.5Mg0.5Fe2O4-TiO2 hybrid material was successfully synthesized with average particle sizes of 40.09 nm for TiO2 and 27.9 nm for Cu0.5Mg0.5Fe2O4. As the calculated bandgap energy of the hybrid material was approximately 2.86 eV, it could harvest photon energy in the visible region. Results indicate that the Cu0.5Mg0.5Fe2O4-TiO2 also had reasonable magnetic properties with a saturation magnetization value of 11.2 emu/g, which is a level of making easy separation from the solution by an external magnet. The resultant Cu0.5Mg0.5Fe2O4-TiO2 hybrid material revealed better photocatalytic performance for rhodamine B dye (consistent removal rate in the 13.96 × 10-3 min-1) compared with free-standing Cu0.5Mg0.5Fe2O4 and TiO2 materials. The recyclability and photocatalytic mechanism of Cu0.5Mg0.5Fe2O4-TiO2 are also well discussed.


Assuntos
Titânio , Águas Residuárias , Óxido de Alumínio , Catálise , Compostos Férricos , Óxido de Magnésio , Rodaminas
9.
Sci Total Environ ; 713: 136404, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019008

RESUMO

A two-stage treatment system that included vertical flow (VF) and free-water surface (FWS) constructed wetlands was investigated for the dual purposes of sewage treatment and reuse. The VF included four layers (biochar, sand, gravel, and sandy soil), and the FWS was installed after the VF and used as a polishing tank. Two types of local plants, namely Colocasia esculenta and Canna indica, were planted in the VF and FWS, respectively. The system operated for approximately six months, and the experimental period was categorized into four stages that corresponded to changes in the hydraulic loading rate (HLR) (0.02-0.12 m/d). The removal efficiencies for total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD5), ammonia (NH4-N), and total coliform (Tcol) were 71 ± 11%, 73 ± 13%, 79 ± 11%, 91 ± 3%, and 70 ± 20%, respectively. At HLRs of 0.04-0.06 m/d, the COD and BOD5 levels satisfied Vietnam's irrigation standards, with removable rates of 64% and 88%, respectively, and the TSS and Tcol levels satisfied Vietnam's standards for potable water. Furthermore, the NO3-N levels satisfied the reuse limits, whereas the NH4-N levels exceeded the reuse standards. At high HLRs (e.g., 0.12 m/d), all the effluent parameters, except Tcol and NO3-N, exceeded the standards.


Assuntos
Esgotos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal , Nitrogênio , Vietnã , Eliminação de Resíduos Líquidos , Água
10.
Biotechnol Rep (Amst) ; 28: e00529, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32995317

RESUMO

Food waste (FW) is more harmful than previously imagined. A large amount of Vietnam's FW ends up in landfills, only 20 % of which are sanitary. This causes significant environmental problems such as greenhouse gas emissions, high carbon footprint, leachate, and landfill-related conflicts. The FW from Vietnam's urban areas is 0.29 kg⸳p-1⸳d-1, accounting for 31.7 % of total waste. 38.81 % of families discharge FW which, along with municipal waste, corresponds to 4,429.21 ton⸳d-1 for the entire country. For FW collection, under transportation and treatment heads, 80,416.95 $⸳d-1 and 74,605.57 $⸳d-1 were spent, respectively. An analysis of Vietnam's national strategy for the integrated management of solid waste indicates that the amount of attention and concern currently given to FW issues is not adequate to address them. To resolve FW issues, Vietnam needs to be more proactive regarding solutions and efforts, in addition to implementing strict regulations. These include the setting of national goals under the priority of national strategy, strict regulations, stakeholder engagement, FW recycling to animal feed, biorefinery, and awareness-raising campaigns.

11.
Bioresour Technol ; 306: 123095, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32172086

RESUMO

This study developed a unique system by combining the novel vertical flow (NVF) using expanded clay (ExC) and free flow surface constructed wetland (FWS) for dormitory sewage purification and reuse. The NVF tank consisted of filter layers of ExC, sandy soil, sand, and gravel. The FWS consisted of sandy soil substrate and was installed after the NVF. Colocasia esculenta and Dracaena sanderiana was planted in NVF and FWS, respectively. The treatment system was operated and tested for more than 21 weeks by increasing the hydraulic loading rate (HLR) from 0.02 m/d to 0.12 m/d. The results demonstrated that effluents in the system changed proportionally to the HLRs, except for nitrate nitrogen. Furthermore, the maximum removal efficiencies for TSS, BOD5, NH4-N, and Tcol were 76 ± 13%, 74 ± 11%, 90 ± 3%, and 59 ± 18% (0.37 ± 0.19 log10MPN/100 mL), respectively. At HLRs of 0.04-0.06 m/d, the treatment system satisfied the limits of agriculture irrigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA