Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 505(7482): 190-4, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24336218

RESUMO

Graphene has attracted worldwide interest since its experimental discovery, but the preparation of large-area, continuous graphene film on SiO2/Si wafers, free from growth-related morphological defects or transfer-induced cracks and folds, remains a formidable challenge. Growth of graphene by chemical vapour deposition on Cu foils has emerged as a powerful technique owing to its compatibility with industrial-scale roll-to-roll technology. However, the polycrystalline nature and microscopic roughness of Cu foils means that such roll-to-roll transferred films are not devoid of cracks and folds. High-fidelity transfer or direct growth of high-quality graphene films on arbitrary substrates is needed to enable wide-ranging applications in photonics or electronics, which include devices such as optoelectronic modulators, transistors, on-chip biosensors and tunnelling barriers. The direct growth of graphene film on an insulating substrate, such as a SiO2/Si wafer, would be useful for this purpose, but current research efforts remain grounded at the proof-of-concept stage, where only discontinuous, nanometre-sized islands can be obtained. Here we develop a face-to-face transfer method for wafer-scale graphene films that is so far the only known way to accomplish both the growth and transfer steps on one wafer. This spontaneous transfer method relies on nascent gas bubbles and capillary bridges between the graphene film and the underlying substrate during etching of the metal catalyst, which is analogous to the method used by tree frogs to remain attached to submerged leaves. In contrast to the previous wet or dry transfer results, the face-to-face transfer does not have to be done by hand and is compatible with any size and shape of substrate; this approach also enjoys the benefit of a much reduced density of transfer defects compared with the conventional transfer method. Most importantly, the direct growth and spontaneous attachment of graphene on the underlying substrate is amenable to batch processing in a semiconductor production line, and thus will speed up the technological application of graphene.

2.
Nano Lett ; 17(11): 7080-7085, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28967761

RESUMO

Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contains additional confined bands which produce a structure-specific contrast of the local conductivity, in agreement with the experiment. The coupling between the confined modes and the surface plasmon scattering unveiled in this work is expected to be common to other topological electronic boundaries found in van der Waals materials. This coupling provides a qualitatively new pathway toward controlling plasmons in nanostructures.

3.
Nano Lett ; 15(8): 4859-64, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26181908

RESUMO

We characterized plasmon propagation in graphene on thin films of the high-κ dielectric PbZr0.3Ti0.7O3 (PZT). Significant modulation (up to ±75%) of the plasmon wavelength was achieved with application of ultrasmall voltages (< ±1 V) across PZT. Analysis of the observed plasmonic fringes at the graphene edge indicates that carriers in graphene on PZT behave as noninteracting Dirac Fermions approximated by a semiclassical Drude response, which may be attributed to strong dielectric screening at the graphene/PZT interface. Additionally, significant plasmon scattering occurs at the grain boundaries of PZT from topographic and/or polarization induced graphene conductivity variation in the interior of graphene, reducing the overall plasmon propagation length. Lastly, through application of 2 V across PZT, we demonstrate the capability to persistently modify the plasmonic response of graphene through transient voltage application.

4.
Phys Rev Lett ; 105(16): 166602, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230990

RESUMO

Recent experiments on ferroelectric gating have introduced a novel functionality, i.e., nonvolatility, in graphene field-effect transistors. A comprehensive understanding in the nonlinear, hysteretic ferroelectric gating and an effective way to control it are still absent. In this Letter, we quantitatively characterize the hysteretic ferroelectric gating using the reference of an independent background doping (n(BG)) provided by normal dielectric gating. More importantly, we prove that n(BG) can be used to control the ferroelectric gating by unidirectionally shifting the hysteretic ferroelectric doping in graphene. Utilizing this electrostatic effect, we demonstrate symmetrical bit writing in graphene-ferroelectric field-effect transistors with resistance change over 500% and reproducible no-volatile switching over 105 cycles.

5.
Nat Commun ; 11(1): 3567, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678086

RESUMO

Van-der Waals (vdW) atomically layered crystals can act as optical waveguides over a broad range of the electromagnetic spectrum ranging from Terahertz to visible. Unlike common Si-based waveguides, vdW semiconductors host strong excitonic resonances that may be controlled using non-thermal stimuli including electrostatic gating and photoexcitation. Here, we utilize waveguide modes to examine photo-induced changes of excitons in the prototypical vdW semiconductor, WSe2, prompted by femtosecond light pulses. Using time-resolved scanning near-field optical microscopy we visualize the electric field profiles of waveguide modes in real space and time and extract the temporal evolution of the optical constants following femtosecond photoexcitation. By monitoring the phase velocity of the waveguide modes, we detect incoherent A-exciton bleaching along with a coherent optical Stark shift in WSe2.

6.
Adv Mater ; 26(7): 1081-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24327432

RESUMO

A controllable optical anisotropy in CVD graphene is shown. The transparency in the visible range of pre-strained CVD graphene exhibits a periodic modulation as a function of polarization direction. The strain sensitivity of the optical response of graphene demonstrated here can be effectively utilized towards novel ultra-thin optical devices and strain sensing applications.


Assuntos
Grafite/química , Condutividade Elétrica , Microscopia de Força Atômica , Dispositivos Ópticos
7.
ACS Nano ; 6(5): 3935-42, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22524641

RESUMO

Graphene has exceptional optical, mechanical, and electrical properties, making it an emerging material for novel optoelectronics, photonics, and flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constraint for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using nonvolatile ferroelectric polymer gating. In this hybrid structure, large-scale graphene is heavily doped up to 3 × 10(13) cm(-2) by nonvolatile ferroelectric dipoles, yielding a low sheet resistance of 120 Ω/□ at ambient conditions. The graphene-ferroelectric transparent conductors (GFeTCs) exhibit more than 95% transmittance from the visible to the near-infrared range owing to the highly transparent nature of the ferroelectric polymer. Together with its excellent mechanical flexibility, chemical inertness, and the simple fabrication process of ferroelectric polymers, the proposed GFeTCs represent a new route toward large-scale graphene-based transparent electrodes and optoelectronics.

8.
ACS Nano ; 6(2): 1158-64, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22251076

RESUMO

The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 µm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA