Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016591

RESUMO

Electrochemiluminescence (ECL) sensors have been widely developed because of their high sensitivity and low background. However, most of them suffered from tedious probe modification on the electrode and cross-interferences within the sensing and reporting reactions. The bipolar electrode based ECL (BPE-ECL) can effectively eliminate interference by physically separating the sensing and reporting cells, but there is still a need for exogenous electroactive indicators to transduce the variations between two poles of a BPE. Herein, based on the discovery that conductivity can be regulated in aqueous medium by homogeneous bioreaction, we showed a novel BPE-ECL sensing platform that combined the conductivity-based biosensing technology with ECL reporting system for the first time. Compared to many short nucleic acids, the target induced a hybridization chain reaction to produce the long nucleic acid aggregates, resulting in a conductivity decrease of the sensing cell and finally reducing the ECL response in the reporting cell. The BPE-ECL platform has already been applied to detect microRNA-21 for a demonstration. This innovative system not only separates the target sensing and reporting reactions but also avoids the use of electrochemical indicators for measurement. The BPE-ECL biosensing platform can be developed to detect different targets by changing the probe used.

2.
Chemistry ; 30(32): e202400700, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38625164

RESUMO

The sensitive and reliable nanozyme-based sensor enables the detection of low concentrations of H2O2 in biological microenvironments, it has potential applications as an in-situ monitoring platform for cellular H2O2 release. The uniformly dispersed bimetallic sulfide (Zn2SnS4) nanoflowers were synthesized via a one-pot hydrothermal method and the two kinds of metal ions can serve as morphology and structure directing agents for each other in the synthetic process. The nanoparticles were utilized as nanozyme materials to fabricate a novel electrochemical sensor, and it exhibits a distinct electrochemical response towards H2O2 with excellent stability and detection capability (with a minimum detection limit of 1.79 nM (S/N=3)), the excellent characteristics facilitate the precise detection of low concentrations of H2O2 in biological microenvironments. Use the macrophages differentiated from leukemia THP-1 cells as a representative sensing model, the sensor was successfully utilized for real-time monitoring of the release of H2O2 induced by living cells, which has significant potential applications in clinical diagnosis and cancer treatment.


Assuntos
Técnicas Eletroquímicas , Peróxido de Hidrogênio , Limite de Detecção , Sulfetos , Peróxido de Hidrogênio/química , Humanos , Técnicas Eletroquímicas/métodos , Sulfetos/química , Zinco/química , Células THP-1 , Macrófagos/metabolismo
3.
RSC Adv ; 14(9): 6058-6063, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38370451

RESUMO

High-speed circuits based on thin film transistors (TFTs) show promising potential applications in biomedical imaging and human-machine interactions. One of the critical requirements for high-speed electronic devices lies in high-frequency switching or amplification at low voltages, typically driven by batteries (∼3.0 V). To date, however, most electrical performances of metal oxide TFTs are measured under direct current (DC) conditions, and their dynamic switching behaviour is scarcely explored and studied systematically. Here in this work, we present low voltage-driven, high-performance TiO2 thin film transistors, which can be operated at a switching speed of MHz. Our proposed TiO2 TFTs demonstrated a high on-off ratio of 107, together with a subthreshold swing (SS) of ∼150 mV Dec-1 averaged over four orders of magnitude, which can be further reduced below 100 mV Dec-1 when the temperature cools to 77 K. Additionally, the TiO2 TFTs exhibit excellent gate-pulse switching at various frequencies ranging from 1.0 Hz to 1.0 MHz. We also explored the potential application of the TiO2 TFTs as logic gates by constructing a resistive-loaded inverter, which shows stable operation at 10 kHz frequency and various temperatures. Thus, our results show the great potential of TiO2 TFTs as a new platform for high-speed electronic applications.

4.
ACS Appl Bio Mater ; 7(8): 5258-5267, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39103296

RESUMO

Sensitive detection of cardiac troponin I (cTnI) is of great significance in the diagnosis of a fatal acute myocardial infarction. A redox-active nanocomposite of copper(II)-tannic acid@Cu (CuTA@Cu) was herein prepared on the surface of a glassy carbon electrode by electrochemical deposition of metallic copper combined with a metal stripping strategy. Then, HAuCl4 was in situ reduced to gold nanoparticles (AuNPs) by strong reductive catechol groups in the TA ligand. The AuNPs/CuTA@Cu composite was further utilized as a bifunctional matrix for the immobilization of the cTnI antibody (anti-cTnI), producing an electrochemical immunosensor. Electrochemical tests show that the immunoreaction between anti-cTnI and target cTnI can cause a significant reduction of the electrochemical signal of CuTA@Cu. It can be attributed to the insulating characteristic of the immunocomplex and its barrier effect to the electrolyte ion diffusion. From the signal changes of CuTA@Cu, cTnI can be analyzed in a wide range from 10 fg mL-1 to 10 ng mL-1, with an ultralow detection limit of 0.65 fg mL-1. The spiked recovery assays show that the immunosensor is reliable for cTnI determination in human serum samples, demonstrating its promising application in the early clinical diagnosis of myocardial infarction.


Assuntos
Cobre , Técnicas Eletroquímicas , Ouro , Teste de Materiais , Nanopartículas Metálicas , Troponina I , Ouro/química , Cobre/química , Troponina I/sangue , Troponina I/análise , Troponina I/imunologia , Nanopartículas Metálicas/química , Humanos , Imunoensaio/métodos , Técnicas Biossensoriais , Materiais Biocompatíveis/química , Tamanho da Partícula , Polifenóis
5.
Biosens Bioelectron ; 247: 115967, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147716

RESUMO

Prolidase (PLD) plays a crucial role as a dipeptidase in various physiological processes, specifically involved in the cleavage of proline-containing dipeptides for efficient recycling of proline. The accurate determination of PLD activity holds significant importance in clinical diagnosis. Herein, a solid-state electrochemiluminescence (ECL) biosensor was developed to address the urgent need for PLD assay. The Ru(bpy)32+ was electrophoretically deposited within the nanochannels of vertically-ordered mesoporous silica film (VMSF) on indium tin oxide (ITO) electrodes. The Ru(bpy)32+-deposited VMSF/ITO (Ru-VMSF/ITO) exhibited a remarkable ECL response towards proline, attributed to the enhanced concentration of the reactants and improved electron transfer resulting from the nanoconfinement effect. As PLD specifically enzymolyzed the Gly-Pro dipeptide to release proline, a proline-mediated biosensor was developed for PLD assay. Increased PLD activity led to enhanced release of proline into the porous solid-state ECL sensors, resulting in a more robust ECL signal. There was a linear relationship between ΔECL intensity and logarithmic concentration of PLD in the range of 10-10000 U/L, with a detection limit of 1.98 U/L. Practical tests demonstrated the reliability and convenience of the proposed bioassay, making it suitable for widespread application in PLD assays.


Assuntos
Técnicas Biossensoriais , Dióxido de Silício , Reprodutibilidade dos Testes , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Prolina , Técnicas Eletroquímicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA