Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Pharmacol Rev ; 76(5): 846-895, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866561

RESUMO

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.


Assuntos
Doenças Cardiovasculares , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Humanos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Gasotransmissores/metabolismo
2.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664801

RESUMO

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Assuntos
Caveolina 1 , Dieta Hiperlipídica , Células Endoteliais , Endotélio Vascular , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Vasodilatação , Animais , Masculino , Camundongos , Aorta/enzimologia , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Caveolina 1/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/efeitos dos fármacos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Obesidade/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Esterol Esterase/genética , Ubiquitinação , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA