Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Pflugers Arch ; 474(12): 1249-1262, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36175560

RESUMO

Solute carriers (SLC) are important membrane transport proteins in normal and pathophysiological cells. The aim was to identify amino acid SLC(s) responsible for uptake of sarcosine and glycine in prostate cancer cells and investigate the impact hereon of hyperosmotic stress. Uptake of 14C-sarcosine and 3H-glycine was measured in human prostate cancer (PC-3) cells cultured under isosmotic (300 mOsm/kg) and hyperosmotic (500 mOsm/kg) conditions for 24 h. Hyperosmotic culture medium was obtained by supplementing the medium with 200 mM of the trisaccharide raffinose. Amino acid SLC expression was studied using RT-PCR, real-time PCR, and western blotting. siRNA knockdown of SNAT2 was performed. Experiments were conducted in at least 3 independent cell passages. The uptake of Sar and Gly was increased approximately 8-ninefold in PC-3 cells after 24 h hyperosmotic culture. PAT1 mRNA and protein could not be detected, while SNAT2 was upregulated at the mRNA and protein level. Transfection with SNAT2-specific siRNA reduced Vmax of Sar uptake from 2653 ± 38 to 513 ± 38 nmol mg protein-1 min-1, without altering the Km value (3.19 ± 0.13 vs. 3.42 ± 0.71 mM), indicating that SNAT2 is responsible for at least 80% of Sar uptake in hyperosmotic cultured PC-3 cells. SNAT2 is upregulated in hyperosmotic stressed prostate cancer cells and SNAT2 is responsible for cellular sarcosine and glycine uptake in hyperosmotic cultured PC-3 cells. Sar is identified as a substrate for SNAT2, and this has physiological implications for understanding cellular solute transport in prostate cancer cells.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Próstata/metabolismo , Sarcosina/metabolismo , Células PC-3 , RNA Interferente Pequeno , Glicina , Neoplasias da Próstata/metabolismo , Aminoácidos , RNA Mensageiro/genética
2.
Mol Pharm ; 19(7): 2248-2253, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512380

RESUMO

Much effort has been invested in the search for modulators of membrane transport proteins such as P-glycoprotein (P-gp) to improve drug bioavailability and reverse multidrug resistance in cancer. Nonionic surfactants, a class of pharmaceutical excipients, are known to inhibit such proteins, but knowledge about the exact mechanism of this inhibition is scarce. Here, we perform multiscale molecular dynamics simulations of one of these surfactants, polysorbate 20 (PS20), to reveal the behavior of such compounds on the molecular level and thereby discover the molecular mechanism of the P-gp inhibition. We show that the amphiphilic headgroup of PS20 is too hydrophobic to partition in the water phase, which drives the binding of PS20 to the amphiphilic drug-binding domain of P-gp and thereby causes the inhibition of the protein. Based on our findings, we conclude that PS20 primarily inhibits P-gp through direct binding to the drug-binding domain (DBD) from the extracellular leaflet.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Polissorbatos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Excipientes/química , Polissorbatos/química , Tensoativos/química
3.
Genomics ; 111(6): 1557-1565, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30389539

RESUMO

Hyperosmolality is found under physiological conditions in the kidneys, whereas hyperosmolality in other tissues may be associated with pathological conditions. In such tissues an association between inflammation and hyperosmolality has been suggested. During hyperosmotic stress, an important phenomenon is upregulation of solute carriers (SLCs). We hypothesize that hyperosmolality affects the expression of many SLCs as well as ABC transporters. Through RNA-sequencing and topological pathway analysis, the cell cycle, the cytokine-cytokine receptor interaction pathway, and the chemokine-signaling pathway were significantly activated in MDCK I cells after hyperosmotic treatment (Δ200 mOsm) with raffinose or NaCl. 9065, 8052 and 5018 genes were significantly regulated by raffinose, NaCl or urea supplementation (500 mOsm), respectively, compared to control (300 mOsm). Cytokines, that have not previously been associated with hyperosmolality, were identified. We further provide an overview of transport proteins that could be of relevance in tissues exposed to hyperosmolality. Especially Slc5a8 was found highly up-regulated.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Perfilação da Expressão Gênica , Rim/metabolismo , Pressão Osmótica/efeitos dos fármacos , Rafinose/farmacologia , Cloreto de Sódio/farmacologia , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Cães , Células Madin Darby de Rim Canino
4.
Mol Pharm ; 16(11): 4636-4650, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31560549

RESUMO

In drug development, estimating fraction absorbed (Fa) in man for permeability-limited compounds is important but challenging. To model Fa of such compounds from apparent permeabilities (Papp) across filter-grown Caco-2 cell monolayers, it is central to elucidate the intestinal permeation mechanism(s) of the compound. The present study aims to refine a computational permeability model to investigate the relative contribution of paracellular and transcellular routes to the Papp across Caco-2 monolayers of the permeability-limited compound acamprosate having a bioavailability of ∼11%. The Papp values of acamprosate and of several paracellular marker molecules were measured. These Papp values were used to refine system-specific parameters of the Caco-2 monolayers, that is, paracellular pore radius, pore capacity, and potential drop. The refined parameters were subsequently used as an input in modeling the permeability (Pmodeled) of the tested compounds using mathematical models collected from two published permeability models. The experimental data show that acamprosate Papp across Caco-2 monolayers is low and similar in both transport directions. The obtained acamprosate Papp, 1.56 ± 0.28 × 10-7 cm·s-1, is similar to the Papp of molecular markers for paracellular permeability, namely, mannitol (2.72 ± 0.24 × 10-7 cm·s-1), lucifer yellow (1.80 ± 0.35 × 10-7 cm·s-1), and fluorescein (2.10 ± 0.28 × 10-7 cm·s-1), and lower than that of atenolol (7.32 ± 0.60 × 10-7 cm·s-1; mean ± SEM, n = 3-6), while the end-point amount of acamprosate internalized by the cell monolayer, Qmonolayer, was lower than that of mannitol. Acamprosate did not influence the barrier function of the monolayers since it altered neither the Papp of the three paracellular markers nor the transepithelial electrical resistance (TEER) of the cell monolayer. The Pmodeled for all the paracellular markers and acamprosate was dominated by the Ppara component and matched the experimentally obtained Papp. Furthermore, acamprosate did not inhibit the uptake of probe substrates for solute carriers PEPT1, TAUT, PAT1, EAAT1, B0,+AT/rBAT, OATP2B1, and ASBT expressed in Caco-2 cells. Thus, the Pmodeled estimated well Ppara, and the paracellular route appears to be the predominant mechanism for acamprosate Papp across Caco-2 monolayers, while the alternative transcellular routes, mediated by passive diffusion or carriers, are suggested to only play insignificant roles.


Assuntos
Acamprosato/metabolismo , Atenolol/metabolismo , Disponibilidade Biológica , Transporte Biológico/fisiologia , Células CACO-2 , Linhagem Celular Tumoral , Difusão , Fluoresceína/metabolismo , Humanos , Isoquinolinas/metabolismo , Manitol/metabolismo , Permeabilidade
5.
Mol Pharm ; 13(9): 3119-29, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27396755

RESUMO

Ibuprofen is a widely used drug. It has been identified as an inhibitor of several transporters, but it is not clear if ibuprofen is a substrate of any transporter itself. In the present work, we have characterized a transporter of ibuprofen, which is upregulated by hyperosmotic culture conditions in Madin-Darby canine kidney I (MDCK I) renal cells. [(3)H]-Ibuprofen uptake rate was measured in MDCK I cell cultured under normal (300 mOsm) and hyperosmotic (500 mOsm) conditions. Hyperosmotic conditions were obtained by supplementing urea, NaCl, mannitol, or raffinose to culture medium. The effect of increased osmolarity was investigated for different incubation times. [(3)H]-Ibuprofen uptake in MDCK I cells was upregulated by hyperosmotic culture condition, and was saturable with a Km value of 0.37 ± 0.08 µM and a Vmax of 233.1 ± 17.2 pmol· cm(-2)· min(-1). Racemic [(3)H]-ibuprofen uptake could be inhibited by (R)-(-)- and (S)-(+)-ibuprofen with IC50 values of 19 µM (Log IC50 1.39 ± 0.34) and 0.47 µM (Log IC50 -0.36 ± 0.41), respectively. Furthermore, the [(3)H]-ibuprofen uptake rate was increased by decreased extracellular pH but not dependent on Na(+) or Cl(-) ions. The mRNA of Mct1, -2, -4, and -6 as well as Oat1 and -3 were not upregulated by hyperosmolarity. Our findings present strong evidence for the presence of a yet unknown ibuprofen transporter in MDCK I cells. The transporter was upregulated under hyperosmotic culture conditions, and the present study is therefore a starting point for identification of the molecular correlate and potential impact on ibuprofen disposition.


Assuntos
Ibuprofeno/metabolismo , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Linhagem Celular , Cães , Manitol/farmacologia , Concentração Osmolar , Rafinose/farmacologia , Cloreto de Sódio/farmacologia , Ureia/farmacologia
6.
Pharm Res ; 32(3): 898-909, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25182974

RESUMO

PURPOSE: Gabapentin exhibits saturable absorption kinetics, however, it remains unclear which transporters that are involved in the intestinal transport of gabapentin. Thus, the aim of the current study was to explore the mechanistic influence of transporters on the intestinal absorption of gabapentin by both in vivo and in vitro investigations METHODS: Pharmacokinetic parameters were determined following a range of intravenous (5-100 mg/kg) and oral doses (10-200 mg/kg) in rats. Transepithelial transport (50 µM-50 mM) and apical uptake of gabapentin (0.01-50 mM) were investigated in Caco-2 cells. The effect of co-application of the LAT-inhibitor, BCH, and the b(0,+)-substrate, L-lysine, on intestinal transport of gabapentin was evaluated in vivo and in vitro. RESULTS: Gabapentin showed dose-dependent oral absorption kinetics and dose-independent disposition kinetics. Co-application of BCH inhibited intestinal absorption in vivo and apical uptake in vitro, whereas no effect was observed following co-application of L-lysine. CONCLUSIONS: The present study shows for the first time that BCH was capable of inhibiting intestinal absorption of gabapentin in vivo. Furthermore, in Caco-2 cell experiments BCH inhibited apical uptake of gabapentin. These findings may imply that a BCH-sensitive transport-system was involved in the apical and possibly the basolateral transport of gabapentin across the intestinal wall.


Assuntos
Aminas/administração & dosagem , Aminas/farmacocinética , Ácidos Cicloexanocarboxílicos/administração & dosagem , Ácidos Cicloexanocarboxílicos/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido gama-Aminobutírico/administração & dosagem , Ácido gama-Aminobutírico/farmacocinética , Administração Oral , Aminas/sangue , Aminoácidos Cíclicos/farmacologia , Animais , Células CACO-2 , Ácidos Cicloexanocarboxílicos/sangue , Relação Dose-Resposta a Droga , Gabapentina , Humanos , Injeções Intravenosas , Masculino , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/efeitos adversos , Modelos Biológicos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/sangue
7.
Am J Physiol Endocrinol Metab ; 306(1): E65-74, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24222668

RESUMO

The proton-coupled amino acid transporter 1 (PAT1) is a transporter of amino acids in small intestinal enterocytes. PAT1 is, however, also capable of regulating cell growth and sensing the availability of amino acids in other cell types. The aim of the present study was to investigate the localization and function of PAT1 in smooth muscle cells (SMCs). The PAT1 protein was found in smooth muscles from rat intestine and in the embryonic rat aorta cell line A7r5. Immunolocalization and cellular fractionation studies revealed that the majority of the PAT1 protein located within the cell nucleus of A7r5 cells. These results were confirmed in primary SMCs derived from rat aorta and colon. A 3'-untranslated region of the PAT1 transcript directed the nuclear localization. Neither cellular starvation nor cell division altered the nuclear localization. In agreement, uptake studies of l-proline, a PAT1 substrate, in A7r5 cells suggested an alternative role for PAT1 in SMCs than in transport. To shed light on the function of PAT1 in A7r5 cells, experiments with downregulation of the PAT1 level by use of a siRNA approach were conducted. The growth rates of the cells were evaluated, and knockdown of PAT1 led to induced cellular growth, suggesting a role for PAT1 in regulating cellular proliferation of SMCs.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/análise , Sistemas de Transporte de Aminoácidos Neutros/fisiologia , Núcleo Celular/química , Proliferação de Células , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/ultraestrutura , Simportadores/análise , Simportadores/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Aorta , Células CACO-2 , Fracionamento Celular , Linhagem Celular , Colo , Embrião de Mamíferos , Expressão Gênica , Humanos , Masculino , Prolina/metabolismo , RNA Mensageiro/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Wistar , Simportadores/genética , Transfecção
8.
Pharmaceutics ; 16(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399253

RESUMO

Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters.

9.
Int J Pharm ; 656: 124120, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621613

RESUMO

While various non-ionic surfactants at low concentrations have been shown to increase the transport of P-gp substrates in vitro, in vivo studies in rats have shown that a higher surfactant concentration is needed to increase the oral absorption of e.g. the P-gp substrates digoxin and etoposide. The aim of the present study was to investigate if intestinal digestion of surfactants could be the reason for this deviation between in vitro and in vivo data. Therefore, Kolliphor EL, Brij-L23, Labrasol and polysorbate 20 were investigated for their ability to inhibit P-gp and increase digoxin absorption in vitro. Transport studies were performed in Caco-2 cells, while P-gp inhibition and cell viability assays were performed in MDCKII-MDR1 cells. Polysorbate 20, Kolliphor EL and Brij-L23 increased absorptive transport and decreased secretory digoxin transport in Caco-2 cells, whereas only polysorbate 20 and Brij-L23 showed P-gp inhibiting properties in the MDCKII-MDR1 cells. Polysorbate 20 and Brij-L23 were chosen for in vitro digestion prior to transport- or P-gp inhibiting assays. Brij-L23 was not digestible, whereas polysorbate 20 reached a degree of digestion around 40%. Neither of the two surfactants showed any significant difference in their ability to affect absorptive or secretory transport of digoxin after pre-digestion. Furthermore, the P-gp inhibiting effects of polysorbate 20 were not decreased significantly. In conclusion, the mechanism behind the non-ionic surfactant mediated in vitro P-gp inhibition seemed independent of the intestinal digestion and the results presented here did not suggest it to be the cause of the observed discrepancy between in vitro and in vivo.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Digoxina , Polissorbatos , Tensoativos , Animais , Cães , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Digestão/efeitos dos fármacos , Digoxina/farmacocinética , Glicerídeos/metabolismo , Absorção Intestinal/efeitos dos fármacos , Células Madin Darby de Rim Canino , Polissorbatos/farmacologia , Tensoativos/farmacologia
10.
Int J Pharm ; 654: 123965, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38442796

RESUMO

The oral bioavailability of paclitaxel is limited due to low solubility and high affinity for the P-glycoprotein (P-gp) efflux transporter. Here we hypothesized that maximizing the intestinal paclitaxel levels through apparent solubility enhancement and controlling thesimultaneous release of both paclitaxel and the P-gp inhibitor encequidar from amorphous solid dispersions (ASDs) would increase the oral bioavailability of paclitaxel. ASDs of paclitaxel and encequidar in polyvinylpyrrolidone K30 (PVP-K30), hydroxypropylmethylcellulose 5 (HPMC-5), and hydroxypropylmethylcellulose 4 K (HPMC-4K) were hence prepared by freeze-drying. In vitro dissolution studies showed that both compounds were released fastest from PVP-K30, then from HPMC-5, and slowest from HPMC-4K ASDs. The dissolution of paclitaxel from all polymers resulted in stable concentration levels above the apparent solubility. The pharmacokinetics of paclitaxel after oral administration to male Sprague-Dawley rats was investigated with or without 1 mg/kg encequidar, as amorphous solids or polymer-based ASDs. The bioavailability of paclitaxel increased 3- to 4-fold when administered as polymer-based ASDs relative to solid amorphous paclitaxel. However, when amorphous paclitaxel was co-administered with encequidar, either as an amorphous powder or as a polymer-based ASD, the bioavailability increased 2- to 4-fold, respectively. Interestingly, a noticeable increase in paclitaxel bioavailability of 24-fold was observed when paclitaxel and encequidar were co-administered as HPMC-5-based ASDs. We, therefore, suggest that controlling the dissolution rate of paclitaxel and encequidar in order to obtain simultaneous and timed release from polymer-based ASDs is a strategy to increase oral paclitaxel bioavailability.


Assuntos
Polímeros , Povidona , Ratos , Masculino , Animais , Disponibilidade Biológica , Ratos Sprague-Dawley , Derivados da Hipromelose , Solubilidade
11.
Front Pharmacol ; 14: 1302445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239202

RESUMO

The sodium-coupled neutral amino acid transporter 2 (SNAT2, SLC38A2) has been implicated in cancer for its ability to supply cancer cells with glutamine and sarcosine. A recent high-throughput screen published by Gauthier-Coles et al. identified the non-amino acid 3-(N-methyl (4-methylphenyl)sulfonamido)-N-(2-trifluoromethylbenzyl)thiophene-2-carboxamide (MMTC or 57E) as a potent and selective SNAT2 inhibitor. Here we have investigated the ability of MMTC and four other compounds selected from the screen by Gauthier-Coles et al. to decrease 3H-Gly uptake in hyperosmotically treated human prostate cancer PC-3 cells. In these cells, SNAT2 is highly upregulated when the cells are hyperosmotically stressed for 24 h and is the primary contributor to glycine uptake. The five compounds were investigated at concentrations of 1-50 µM based on their equilibrium solubility. At 37°C the equilibrium solubility in HEPES buffered HBSS at pH 7.4 was measured to be 24.9 (53B), 56.1 (54F), 13.3 (55B), and 27.5 (57B) µM, respectively. The equilibrium solubility of MMTC was below the detection limit of the HPLC-UV method, thus less than 1.8 µM. However, a kinetic solubility of approximately 2.5-10 µM could be achieved during the course of the uptake study. In contrast to the previous publication, MMTC showed no inhibition of SNAT2-mediated 3H-Gly uptake in PC-3 cells at a concentration of 1 or 5 µM, despite a published IC50 of 0.8 µM. Similarly, 53B, 55B, and 57B showed no inhibition at soluble conditions, whereas 54F showed approximately 20% inhibition at 50 µM. In our experimental setup, the investigated compounds showed limited potential as SNAT2 inhibitors.

12.
Pharmaceutics ; 15(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678911

RESUMO

P-glycoprotein (P-gp) limits the oral absorption of drug substances. Potent small molecule P-gp inhibitors (e.g., zosuquidar) and nonionic surfactants (e.g., polysorbate 20) inhibit P-gp by proposedly different mechanisms. Therefore, it was hypothesised that a combination of zosuquidar and polysorbate 20 may potentiate inhibition of P-gp-mediated efflux. P-gp inhibition by zosuquidar and polysorbate 20 in combination was assessed in a calcein-AM assay and in a transcellular etoposide permeability study in MDCKII-MDR1 and Caco-2 cells. Furthermore, solutions of etoposide, zosuquidar, and polysorbate 20 were orally administered to Sprague Dawley rats. Zosuquidar elicited a high level of nonspecific adsorption to various labware, which significantly affected the outcomes of the in vitro studies. Still, at certain zosuquidar and polysorbate 20 concentrations, additive P-gp inhibition was observed in vitro. In vivo, however, oral etoposide bioavailability decreased by coadministration of both zosuquidar and polysorbate 20 when compared to coadministration of etoposide with zosuquidar alone. For future formulation development, the present study provided important and novel knowledge about nonspecific zosuquidar adsorption, as well as insights into combinational P-gp inhibition by a third-generation P-gp inhibitor and a P-gp-inhibiting nonionic surfactant.

13.
Int J Pharm ; 642: 123094, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37263451

RESUMO

P-glycoprotein (P-gp) inhibitors, like zosuquidar, partly increase oral bioavailability of P-gp substrates, such as etoposide. Here, it was hypothesised that co-release of etoposide and zosuquidar from amorphous solid dispersions (ASDs) may further increase oral etoposide bioavailability. This was envisioned through simultaneous co-release and subsequent spatiotemporal association of etoposide and zosuquidar in the small intestinal lumen. To further achieve this, ASDs of etoposide and zosuquidar in polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC) 5, and HPMC 4 k were prepared by freeze-drying. From these ASDs, etoposide release was fastest from PVP, then HPMC 5 and slowest from HPMC 4. Release from PVP and HPMC5 resulted in stable supersaturations of etoposide. In transcellular permeability studies across MDCKII-MDR1 cell monolayers, the accumulated amount of etoposide increased 3.7-4.9-fold from amorphous etoposide or when incorporated into PVP- or HPMC 5-based ASDs, compared to crystalline etoposide. In vivo, the oral bioavailability in Sprague Dawley rats increased from 1.0 to 2.4-3.4 %, when etoposide was administered as amorphous drug or in ASDs. However, when etoposide and zosuquidar were co-administered, the oral bioavailability increased further to 8.2-18 %. Interestingly, a distinct increase in oral etoposide bioavailability to 26 % was observed when etoposide and zosuquidar were co-administration in HPMC5-based ASDs. The supersaturation of etoposide as well as the simultaneous co-release of etoposide and zosuquidar in the small intestinal lumen may explain the observed bioavailability increase. Overall, this study suggested that simultaneous co-release of an amorphous P-gp substrate and inhibitor may be a novel and viable formulation strategy to increase the bioavailability P-gp substrates.


Assuntos
Povidona , Ratos , Animais , Etoposídeo , Disponibilidade Biológica , Solubilidade , Ratos Sprague-Dawley , Preparações Farmacêuticas/química , Povidona/química , Derivados da Hipromelose/química
14.
Glia ; 60(6): 882-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22392649

RESUMO

The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate homeostasis. Transendothelial transport- and accumulation studies of (3) H-L-glutamate, (3) H-L-aspartate, and (3) H-D-aspartate in an electrically tight bovine endothelial/rat astrocyte blood-brain barrier coculture model were performed. After 6 days in culture, the endothelium displayed transendothelial resistance values of 1014 ± 70 Ω cm(2) , and (14) C-D-mannitol permeability values of 0.88 ± 0.13 × 10(-6) cm s(-1) . Unidirectional flux studies showed that L-aspartate and L-glutamate, but not D-aspartate, displayed polarized transport in the brain-to-blood direction, however, all three amino acids accumulated in the cocultures when applied from the abluminal side. The transcellular transport kinetics were characterized with a K(m) of 69 ± 15 µM and a J(max) of 44 ± 3.1 pmol min(-1) cm(-2) for L-aspartate and a K(m) of 138 ± 49 µM and J(max) of 28 ± 3.1 pmol min(-1) cm(-2) for L-glutamate. The EAAT inhibitor, DL-threo-ß-Benzyloxyaspartate, inhibited transendothelial brain-to-blood fluxes of L-glutamate and L-aspartate. Expression of EAAT-1 (Slc1a3), -2 (Slc1a2), and -3 (Slc1a1) mRNA in the endothelial cells was confirmed by conventional PCR and localization of EAAT-1 and -3 in endothelial cells was shown with immunofluorescence. Overall, the findings suggest that the blood-brain barrier itself may participate in regulating brain L-glutamate concentrations.


Assuntos
Astrócitos/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Polaridade Celular/fisiologia , Células Endoteliais/fisiologia , Ácido Glutâmico/metabolismo , Aminoácidos/metabolismo , Animais , Ácido Aspártico/metabolismo , Transporte Biológico/fisiologia , Bovinos , Células Cultivadas , Impedância Elétrica , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Manitol/metabolismo , RNA Mensageiro/normas , Ratos , Sódio/metabolismo , Trítio/metabolismo
15.
Mol Pharm ; 9(9): 2761-9, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22853447

RESUMO

The oral absorption of some drug substances is mediated by nutrient transporters. As a consequence, nutrients and drugs may compete for available transporters, and interactions at the level of intestinal absorption are possible. Recently, we have identified δ-aminolevulinic acid, Gly-Gly, and Gly-Sar as substrates of the amino acid transporter PAT1. The aim of the present study is to investigate if other Gly-containing dipeptides interact with PAT1, and whether they can inhibit PAT1 mediated drug absorption, in vitro and in vivo. The in vitro methods included two-electrode voltage clamp measurements on hPAT1 expressing Xenopus laevis oocytes, which were used to investigate the PAT1-mediated transport of 17 different Gly-containing dipeptides (Gly-X(aa) or X(aa)-Gly). Also, the transepithelial transport of the PAT1 substrate gaboxadol was investigated across Caco-2 cell monolayers in the presence of different dipeptides. The in vivo part consisted of a pharmacokinetic study in rats following oral administration of gaboxadol and preadministration of 200 mg/kg dipeptide. The results showed that in hPAT1 expressing oocytes Gly-Tyr, Gly-Pro, and Gly-Phe inhibited currents induced by drug substances. In Caco-2 cell monolayers, Gly-Gly, Gly-Sar, and Gly-Pro significantly inhibited the PAT1 mediated absorptive transepithelial transport of gaboxadol; however, when orally administered to rats, Gly-Gly, Gly-Sar, Gly-Pro, or Gly-Tyr did not alter the pharmacokinetic profile of gaboxadol. In conclusion, the present study identifies selected dipeptides as inhibitors of PAT1 mediated drug absorption in various in vitro models.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Dipeptídeos/farmacologia , Glicina/metabolismo , Absorção Intestinal/efeitos dos fármacos , Simportadores/metabolismo , Administração Oral , Animais , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Isoxazóis/farmacologia , Masculino , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Prótons , Ratos , Ratos Sprague-Dawley , Xenopus laevis/metabolismo
16.
Pharm Res ; 29(4): 1134-42, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22234618

RESUMO

PURPOSE: To investigate the rectal absorption of vigabatrin in rats, based on the hypothesis that PAT1 (Slc36a1) is involved. METHODS: Male Sprague-Dawley rats were dosed rectally with five different gels, varying in buffer capacity, the amount of vigabatrin, and co-administration of proline or tryptophan. Western blotting was used to detect rPAT1 in rat rectal epithelium. X. Laevis oocytes were injected with SLC36A1 cRNA for the expression of hPAT1, prior to two-electrode voltage clamp measurements. RESULTS: rPAT1 protein was present in rat rectal epithelium. Approximately 7%-9% of a 1 mg/kg vigabatrin dose was absorbed after rectal administration, regardless of the formulation used. Increasing the dose of vigabatrin 10-fold decreased the absolute bioavailability to 4.2%. Co-administration of proline or tryptophan changed the pharmacokinetic profile, indicating a role of PAT1 in the rectal absorption of vigabatrin. Transport of vigabatrin via hPAT1 expressed in X. Laevis oocytes had a K(m) of 5.2 ± 0.6 mM and was almost completely inhibited by tryptophan. CONCLUSIONS: Although vigabatrin is a PAT1 substrate and the rPAT1 protein is expressed in the rectum epithelium, vigabatrin has low rectal absorption in rats.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Reto/metabolismo , Simportadores/metabolismo , Vigabatrina/farmacocinética , Absorção , Administração Retal , Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Disponibilidade Biológica , Transporte Biológico/fisiologia , Células CACO-2 , Epitélio/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Oócitos/metabolismo , Prolina/metabolismo , Prótons , Ratos , Ratos Sprague-Dawley , Simportadores/antagonistas & inibidores , Triptofano/metabolismo , Vigabatrina/farmacologia , Xenopus laevis
17.
Bioorg Med Chem Lett ; 21(15): 4597-601, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21703856

RESUMO

The rationale for targeting the human di-/tripeptide transporter hPEPT1 for oral drug delivery has been well established by several drug and prodrug cases. The aim of this study was to synthesize novel ketomethylene modified tripeptidomimetics and to investigate their binding affinity for hPEPT1. Three related tripeptidomimetics of the structure H-Phe-ψ[COCH(2)]-Ser(Bz)-X(aa)-OH were synthesized applying the tandem chain extension aldol reaction, where amino acid derived ß-keto imides were stereoselectively converted to α-substituted γ-keto imides. In addition, three corresponding tripeptides, composed of amide bonds, were synthesized for comparison of binding affinities. The six investigated compounds were all defined as high affinity ligands (K(i)-values <0.5 mM) for hPEPT1 by measuring the concentration dependent inhibition of apical [(14)C]Gly-Sar uptake in Caco-2 cells. Consequently, the ketomethylene replacement for the natural amide bond and α-side chain modifications appears to offer a promising strategy to modify tripeptidic structures while maintaining a high affinity for hPEPT1.


Assuntos
Aldeídos/química , Materiais Biomiméticos/química , Simportadores/antagonistas & inibidores , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Células CACO-2 , Humanos , Transportador 1 de Peptídeos , Ligação Proteica , Estereoisomerismo , Simportadores/metabolismo
18.
Int J Pharm X ; 3: 100089, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977557

RESUMO

P-glycoprotein inhibitors, like zosuquidar, have widely been used to study the role of P-glycoprotein in oral absorption. Still, systematic studies on the inhibitor dose-response relationship on intestinal drug permeation are lacking. In the present study, we investigated the effect of 0.79 nM-2.5 µM zosuquidar on etoposide permeability across Caco-2 cell monolayers. We also investigated etoposide pharmacokinetics after oral or IV administration to Sprague Dawley rats with co-administration of 0.063-63 mg/kg zosuquidar, as well as the pharmacokinetics of zosuquidar itself. Oral zosuquidar bioavailability was 2.6-4.2%, while oral etoposide bioavailability was 5.5 ± 0.9%, which increased with increasing zosuquidar doses to 35 ± 5%. The intestinal zosuquidar concentration required to induce a half-maximal increase in bioavailability was estimated to 180 µM. In contrast, the IC50 of zosuquidar on etoposide permeability in vitro was only 5-10 nM, and a substantial in vitro-in vivo discrepancy of at least four orders of magnitude was thereby identified. Overall, the present study provides valuable insights for future formulation development that applies fixed dose combinations of P-glycoprotein inhibitors to increase the absorption of poorly permeable P-glycoprotein substrate drugs.

19.
Eur J Pharm Sci ; 163: 105867, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951482

RESUMO

Buccal films containing a pH modifying excipient may be able to increase bioavailability of drugs with pH-dependent solubility such as saquinavir. Access to suitable in vitro drug release testing methods may facilitate buccal formulation development. This study aimed to explore two release testing methods for characterising buccal films and to elucidate the relationship between microenvironmental pH (pHM, i.e. the pH around the swelling films) and saquinavir release. The Franz diffusion cell method was applicable to investigate the effect of hydroxypropyl methylcellulose (HPMC) grade on saquinavir release. Films containing HPMC K3 LV had a faster saquinavir release than films containing HPMC K100 LV. A UV/Vis imaging method was developed to visualise saquinavir release and pHM changes during the initial dissolution. Within 5 min, the pHM decreased from 6.8 to around 5.4 for HPMC K100 LV-based films containing 11.1 % or 16.6 % (w/w) malic acid. Subsequently, the pHM increased due to increasing concentrations of saquinavir. An increase in malic acid content led to a faster saquinavir release. The combination of methods may be broadly applicable for excipient screening in development of buccal formulations. The imaging approach holds promise for characterizing other pH modifying formulation principles.


Assuntos
Química Farmacêutica , Saquinavir , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Derivados da Hipromelose , Solubilidade
20.
Eur J Mass Spectrom (Chichester) ; 27(6): 266-271, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34989272

RESUMO

Beer is a complex mix of more than 7700 compounds, around 800 of which are volatile. While GC-MS has been actively employed in the analysis of the volatome of beer, this method is challenged by the complex nature of the sample. Herein, we explored the possible of using membrane-inlet mass spectrometry (MIMS) coupled to KNIME to characterize local Danish beers. KNIME stands for Konstanz Information Miner and is a free open-source data processing software which comes with several prebuilt nodes, that, when organized, result in data processing workflows allowing swift analysis of data with outputs that can be visualized in the desired format. KNIME has been shown to be promising in automation of large datasets and requires very little computing power. In fact, most of the computations can be carried out on a regular PC. Herein, we have utilized a KNIME workflow for data visualization of MIMS data to understand the global volatome of beers. Feature identification was not possible as of now but with a combination of MIMS and a KNIME workflow, we were able to distinguish beers from different micro-breweries located in Denmark, laying the foundation for the use of MIMS in future analysis of the beer volatome.


Assuntos
Baías , Cerveja , Cerveja/análise , Dinamarca , Espectrometria de Massas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA