Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Biol Chem ; 299(7): 104853, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220854

RESUMO

We have investigated the equilibrium properties and rapid-reaction kinetics of the isolated butyryl-CoA dehydrogenase (bcd) component of the electron-bifurcating crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase (EtfAB-bcd) from Megasphaera elsdenii. We find that a neutral FADH• semiquinone accumulates transiently during both reduction with sodium dithionite and with NADH in the presence of catalytic concentrations of EtfAB. In both cases full reduction of bcd to the hydroquinone is eventually observed, but the accumulation of FADH• indicates that a substantial portion of reduction occurs in sequential one-electron processes rather than a single two-electron event. In rapid-reaction experiments following the reaction of reduced bcd with crotonyl-CoA and oxidized bcd with butyryl-CoA, long-wavelength-absorbing intermediates are observed that are assigned to bcdred:crotonyl-CoA and bcdox:butyryl-CoA charge-transfer complexes, demonstrating their kinetic competence in the course of the reaction. In the presence of crotonyl-CoA there is an accumulation of semiquinone that is unequivocally the anionic FAD•- rather than the neutral FADH• seen in the absence of substrate, indicating that binding of substrate/product results in ionization of the bcd semiquinone. In addition to fully characterizing the rapid-reaction kinetics of both the oxidative and reductive half-reactions, our results demonstrate that one-electron processes play an important role in the reduction of bcd in EtfAB-bcd.


Assuntos
Butiril-CoA Desidrogenase , Megasphaera elsdenii , Oxirredutases , Butiril-CoA Desidrogenase/química , Butiril-CoA Desidrogenase/metabolismo , Elétrons , Ferredoxinas/metabolismo , Cinética , Megasphaera elsdenii/enzimologia , NAD/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Terciária de Proteína , Modelos Moleculares
2.
J Biol Chem ; 299(12): 105403, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229399

RESUMO

We have investigated the kinetics of NAD+-dependent NADPH:ferredoxin oxidoreductase (NfnI), a bifurcating transhydrogenase that takes two electron pairs from NADPH to reduce two ferredoxins and one NAD+ through successive bifurcation events. NADPH reduction takes place at the bifurcating FAD of NfnI's large subunit, with high-potential electrons transferred to the [2Fe-2S] cluster and S-FADH of the small subunit, ultimately on to NAD+; low-potential electrons are transferred to two [4Fe-4S] clusters of the large subunit and on to ferredoxin. Reduction of NfnI by NADPH goes to completion only at higher pH, with a limiting kred of 36 ± 1.6 s-1 and apparent KdNADPH of 5 ± 1.2 µM. Reduction of one of the [4Fe-4S] clusters of NfnI occurs within a second, indicating that in the absence of NAD+, the system can bifurcate and generate low-potential electrons without NAD+. When enzyme is reduced by NADPH in the absence of NAD+ but the presence of ferredoxin, up to three equivalents of ferredoxin become reduced, although the reaction is considerably slower than seen during steady-state turnover. Bifurcation appears to be limited by transfer of the first, high-potential electron into the high-potential pathway. Ferredoxin reduction without NAD+ demonstrates that electron bifurcation is an intrinsic property of the bifurcating FAD and is not dependent on the simultaneous presence of NAD+ and ferredoxin. The tight coupling between NAD+ and ferredoxin reduction observed under multiple-turnover conditions is instead simply due to the need to remove reducing equivalents from the high-potential electron pathway under multiple-turnover conditions.


Assuntos
Proteínas Arqueais , Ferredoxinas , Oxirredutases , Pyrococcus furiosus , Ferredoxinas/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Oxirredução , Oxirredutases/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/metabolismo
3.
Biochemistry ; 62(24): 3554-3567, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061393

RESUMO

Electron bifurcation is an energy-conservation mechanism in which a single enzyme couples an exergonic reaction with an endergonic one. Heterotetrameric EtfABCX drives the reduction of low-potential ferredoxin (E°' ∼ -450 mV) by oxidation of the midpotential NADH (E°' = -320 mV) by simultaneously coupling the reaction to reduction of the high-potential menaquinone (E°' = -74 mV). Electron bifurcation occurs at the NADH-oxidizing bifurcating-flavin adenine dinucleotide (BF-FAD) in EtfA, which has extremely crossed half-potentials and passes the first, high-potential electron to an electron-transferring FAD and via two iron-sulfur clusters eventually to menaquinone. The low-potential electron on the BF-FAD semiquinone simultaneously reduces ferredoxin. We have expressed the genes encodingThermotoga maritimaEtfABCX in E. coli and purified the EtfABCX holoenzyme and the EtfAB subcomplex. The bifurcation activity of EtfABCX was demonstrated by using electron paramagnetic resonance (EPR) to follow accumulation of reduced ferredoxin. To elucidate structural factors that impart the bifurcating ability, EPR and NADH titrations monitored by visible spectroscopy and dye-linked enzyme assays have been employed to characterize four conserved residues, R38, P239, and V242 in EtfA and R140 in EtfB, in the immediate vicinity of the BF-FAD. The R38, P239, and V242 variants showed diminished but still significant bifurcation activity. Despite still being partially reduced by NADH, the R140 variant had no bifurcation activity, and electron transfer to its two [4Fe-4S] clusters was prevented. The role of R140 is discussed in terms of the bifurcation mechanism in EtfABCX and in the other three families of bifurcating enzymes.


Assuntos
Ferredoxinas , Thermotoga maritima , Ferredoxinas/metabolismo , NAD/metabolismo , Elétrons , Flavina-Adenina Dinucleotídeo/química , Escherichia coli/genética , Escherichia coli/metabolismo , Vitamina K 2 , Bactérias/metabolismo , Transporte de Elétrons , Oxirredução , Archaea/metabolismo
4.
J Biol Chem ; 298(6): 101927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429498

RESUMO

The EtfAB components of two bifurcating flavoprotein systems, the crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase from the bacterium Megasphaera elsdenii and the menaquinone-dependent NADH:ferredoxin oxidoreductase from the archaeon Pyrobaculum aerophilum, have been investigated. With both proteins, we find that removal of the electron-transferring flavin adenine dinucleotide (FAD) moiety from both proteins results in an uncrossing of the reduction potentials of the remaining bifurcating FAD; this significantly stabilizes the otherwise very unstable semiquinone state, which accumulates over the course of reductive titrations with sodium dithionite. Furthermore, reduction of both EtfABs depleted of their electron-transferring FAD by NADH was monophasic with a hyperbolic dependence of reaction rate on the concentration of NADH. On the other hand, NADH reduction of the replete proteins containing the electron-transferring FAD was multiphasic, consisting of a fast phase comparable to that seen with the depleted proteins followed by an intermediate phase that involves significant accumulation of FAD⋅-, again reflecting uncrossing of the half-potentials of the bifurcating FAD. This is then followed by a slow phase that represents the slow reduction of the electron-transferring FAD to FADH-, with reduction of the now fully reoxidized bifurcating FAD by a second equivalent of NADH. We suggest that the crossing and uncrossing of the reduction half-potentials of the bifurcating FAD is due to specific conformational changes that have been structurally characterized.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Oxirredutases , Transporte de Elétrons , Flavoproteínas Transferidoras de Elétrons/química , Flavoproteínas Transferidoras de Elétrons/metabolismo , Ferredoxinas/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , NAD/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Estrutura Terciária de Proteína
5.
J Am Chem Soc ; 145(47): 25850-25863, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967365

RESUMO

The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.


Assuntos
Cupriavidus necator , Molibdênio , Molibdênio/química , Formiato Desidrogenases/química , Cupriavidus necator/metabolismo , Dióxido de Carbono/química , Oxirredução , Formiatos
6.
Biochemistry ; 60(42): 3173-3186, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34595921

RESUMO

The tryptophan synthase (TS) bienzyme complexes found in bacteria, yeasts, and molds are pyridoxal 5'-phosphate (PLP)-requiring enzymes that synthesize l-Trp. In the TS catalytic cycle, switching between the open and closed states of the α- and ß-subunits via allosteric interactions is key to the efficient conversion of 3-indole-d-glycerol-3'-phosphate and l-Ser to l-Trp. In this process, the roles played by ß-site residues proximal to the PLP cofactor have not yet been fully established. ßGln114 is one such residue. To explore the roles played by ßQ114, we conducted a detailed investigation of the ßQ114A mutation on the structure and function of tryptophan synthase. Initial steady-state kinetic and static ultraviolet-visible spectroscopic analyses showed the Q to A mutation impairs catalytic activity and alters the stabilities of intermediates in the ß-reaction. Therefore, we conducted X-ray structural and solid-state nuclear magnetic resonance spectroscopic studies to compare the wild-type and ßQ114A mutant enzymes. These comparisons establish that the protein structural changes are limited to the Gln to Ala replacement, the loss of hydrogen bonds among the side chains of ßGln114, ßAsn145, and ßArg148, and the inclusion of waters in the cavity created by substitution of the smaller Ala side chain. Because the conformations of the open and closed allosteric states are not changed by the mutation, we hypothesize that the altered properties arise from the lost hydrogen bonds that alter the relative stabilities of the open (ßT state) and closed (ßR state) conformations of the ß-subunit and consequently alter the distribution of intermediates along the ß-subunit catalytic path.


Assuntos
Proteínas de Bactérias/química , Triptofano Sintase/química , Regulação Alostérica/genética , Proteínas de Bactérias/genética , Biocatálise , Cinética , Mutagênese Sítio-Dirigida , Mutação , Salmonella typhimurium/enzimologia , Triptofano Sintase/genética
7.
J Biol Chem ; 295(19): 6570-6585, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32249211

RESUMO

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH-, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases.


Assuntos
Proteínas de Bactérias/química , Cupriavidus necator/enzimologia , Formiato Desidrogenases/química , Proteínas Ferro-Enxofre/química , Complexos Multienzimáticos/química , Domínio Catalítico , Cristalografia por Raios X , Mononucleotídeo de Flavina/química , Cinética , NAD/química
8.
Arch Biochem Biophys ; 701: 108793, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587905

RESUMO

We have undertaken a spectral deconvolution of the three FADs of EtfAB/bcd to the spectral changes seen in the course of reduction, including the spectrally distinct anionic and neutral semiquinone states of electron-transferring and bcd flavins. We also demonstrate that, unlike similar systems, no charge-transfer complex is observed on titration of the reduced M. elsdenii EtfAB with NAD+. Finally, and significantly, we find that removal of the et FAD from EtfAB results in an uncrossing of the half-potentials of the bifurcating FAD that remains in the protein, as reflected in the accumulation of substantial FAD•- in the course of reductive titrations of the depleted EtfAB with sodium dithionite.


Assuntos
Acil Coenzima A/química , Proteínas de Bactérias/química , Megasphaera elsdenii/enzimologia , NADH NADPH Oxirredutases/química , NAD/química , Acil Coenzima A/genética , Proteínas de Bactérias/genética , Megasphaera elsdenii/genética , NAD/genética , NADH NADPH Oxirredutases/genética , Oxirredução
9.
Biochem J ; 476(12): 1805-1815, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31167903

RESUMO

In addition to nitric oxide (NO) synthases, molybdenum-dependent enzymes have been reported to reduce nitrite to produce NO. Here, we report the stoichiometric reduction in nitrite to NO by human sulfite oxidase (SO), a mitochondrial intermembrane space enzyme primarily involved in cysteine catabolism. Kinetic and spectroscopic studies provide evidence for direct nitrite coordination at the molybdenum center followed by an inner shell electron transfer mechanism. In the presence of the physiological electron acceptor cytochrome c, we were able to close the catalytic cycle of sulfite-dependent nitrite reduction thus leading to steady-state NO synthesis, a finding that strongly supports a physiological relevance of SO-dependent NO formation. By engineering SO variants with reduced intramolecular electron transfer rate, we were able to increase NO generation efficacy by one order of magnitude, providing a mechanistic tool to tune NO synthesis by SO.


Assuntos
Proteínas Mitocondriais/química , Óxido Nítrico/química , Nitritos/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/genética , Nitritos/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
10.
Biochemistry ; 58(14): 1861-1868, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30839197

RESUMO

Direct biocatalytic conversion of CO2 to formic acid is an attractive means of reversibly storing energy in chemical bonds. Formate dehydrogenases (FDHs) are a heterogeneous group of enzymes that catalyze the oxidation of formic acid to carbon dioxide, generating two protons and two electrons. Several FDHs have recently been reported to catalyze the reverse reaction, i.e., the reduction of carbon dioxide to formic acid, under appropriate conditions. The main challenges with these enzymes are relatively low rates of CO2 reduction and high oxygen sensitivity. Our earlier studies (Yu et al. (2017) J. Biol. Chem. 292, 16872-16879) have shown that the FdsABG formate dehydrogenase from Cupriavidus necator is able to effectively catalyze the reduction of CO2, using NADH as a source of reducing equivalents, with a good oxygen tolerance. On the basis of this result, we have developed a highly thermodynamically efficient and cost-effective biocatalytic process for the transformation of CO2 to formic acid using FdsABG. We have  cloned the full-length soluble formate dehydrogenase (FdsABG) from C. necator and expressed it in Escherichia coli with a His-tag fused to the N terminus of the FdsG subunit; this overexpression system has greatly simplified the FdsABG purification process. Importantly, we have also combined this recombinant C. necator FdsABG with another enzyme, glucose dehydrogenase, for continuous regeneration of NADH for CO2 reduction and demonstrated that the combined system is highly effective in reducing CO2 to formate. The results indicate that this system shows significant promise for the future development of an enzyme-based system for the industrial reduction of CO2.


Assuntos
Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Glucose 1-Desidrogenase/metabolismo , NAD/metabolismo , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Catálise , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Escherichia coli/genética , Formiato Desidrogenases/genética , Glucose 1-Desidrogenase/genética , Microbiologia Industrial/métodos , Cinética , Oxirredução , Proteínas Recombinantes/metabolismo
11.
J Biol Inorg Chem ; 24(6): 889-898, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31463592

RESUMO

The formate dehydrogenase enzyme from Cupriavidus necator (FdsABG) carries out the two-electron oxidation of formate to CO2, but is also capable of reducing CO2 back to formate, a potential biofuel. FdsABG is a heterotrimeric enzyme that performs this transformation using nine redox-active cofactors: a bis(molybdopterin guanine dinucleotide) (bis-MGD) at the active site coupled to seven iron-sulfur clusters, and one equivalent of flavin mononucleotide (FMN). To better understand the pathway of electron flow in FdsABG, the reduction potentials of the various cofactors were examined through direct electrochemistry. Given the redundancy of cofactors, a truncated form of the FdsA subunit was developed that possesses only the bis-MGD active site and a singular [4Fe-4S] cluster. Electrochemical characterization of FdsABG compared to truncated FdsA shows that the measured reduction potentials are remarkably similar despite the truncation with two observable features at - 265 mV and - 455 mV vs SHE, indicating that the voltammetry of the truncated enzyme is representative of the reduction potentials of the intact heterotrimer. By producing truncated FdsA without the necessary maturation factors required for bis-MGD insertion, a form of the truncated FdsA that possesses only the [4Fe-4S] was produced, which gives a single voltammetric feature at - 525 mV, allowing the contributions of the molybdenum cofactor to be associated with the observed feature at - 265 mV. This method allowed for the deconvolution of reduction potentials for an enzyme with highly complex cofactor content to know more about the thermodynamic landscape of catalysis.


Assuntos
Cupriavidus necator/enzimologia , Cupriavidus necator/metabolismo , Formiato Desidrogenases/metabolismo , Catálise , Coenzimas/metabolismo , Cupriavidus necator/genética , Mononucleotídeo de Flavina/metabolismo , Formiato Desidrogenases/química , Formiato Desidrogenases/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Metaloproteínas/metabolismo , Cofatores de Molibdênio , Oxirredução , Pteridinas/metabolismo
12.
J Biol Chem ; 292(41): 16872-16879, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28784661

RESUMO

The ability of the FdsABG formate dehydrogenase from Cupriavidus necator (formerly known as Ralstonia eutropha) to catalyze the reverse of the physiological reaction, the reduction of CO2 to formate utilizing NADH as electron donor, has been investigated. Contrary to previous studies of this enzyme, we demonstrate that it is in fact effective in catalyzing the reverse reaction with a kcat of 11 ± 0.4 s-1 We also quantify the stoichiometric accumulation of formic acid as the product of the reaction and demonstrate that the observed kinetic parameters for catalysis in the forward and reverse reactions are thermodynamically consistent, complying with the expected Haldane relationships. Finally, we demonstrate the reaction conditions necessary for gauging the ability of a given formate dehydrogenase or other CO2-utilizing enzyme to catalyze the reverse direction to avoid false negative results. In conjunction with our earlier studies on the reaction mechanism of this enzyme and on the basis of the present work, we conclude that all molybdenum- and tungsten-containing formate dehydrogenases and related enzymes likely operate via a simple hydride transfer mechanism and are effective in catalyzing the reversible interconversion of CO2 and formate under the appropriate experimental conditions.


Assuntos
Proteínas de Bactérias/química , Dióxido de Carbono/química , Cupriavidus necator/enzimologia , Molibdênio/química , Proteínas de Bactérias/metabolismo , Catálise , Formiato Desidrogenases , Cinética , Molibdênio/metabolismo
13.
J Biol Inorg Chem ; 23(2): 295-301, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29299674

RESUMO

We have examined the kinetic and spectroscopic properties of a tungsten-substituted form of DMSO reductase from Rhodobacter sphaeroides, an enzyme that normally possesses molybdenum. Partial reduction with sodium dithionite yields a well-resolved W(V) EPR signal of the so-called "high-g split" type that exhibits markedly greater g-anisotropy than the corresponding Mo(V) signal of the native form of the enzyme, with the g values shifted to higher magnetic field by as much as Δgave = 0.056. Deuteration of the enzyme confirms that the coupled proton is solvent-exchangeable, allowing us to accurately simulate the tungsten hyperfine coupling. Global curve-fitting analysis of UV/vis absorption spectra observed in the course of the reaction of the tungsten-substituted enzyme with sodium dithionite affords a well-defined absorption spectrum for the W(V) species. Surprisingly, the absorption spectrum for this species exhibits significantly larger molar extinction coefficients than either the reduced or the oxidized spectrum. This spectrum, in conjunction with those for fully oxidized W(VI) and fully reduced W(IV) enzyme, has been used to deconvolute the absorption spectra seen in the course of turnover, in the which enzyme is reacted with sodium dithionite and DMSO, demonstrating that the W(V) is an authentic catalytic intermediate that accumulates to approximately 50% of the total enzyme in the steady state.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas Ferro-Enxofre/química , Oxirredutases/química , Rhodobacter sphaeroides/enzimologia , Espectrofotometria Ultravioleta/métodos , Tungstênio/química , Cinética
14.
Biochim Biophys Acta Bioenerg ; 1858(10): 865-872, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28801050

RESUMO

Arsenic is a widely distributed environmental toxin whose presence in drinking water poses a threat to >140 million people worldwide. The respiratory enzyme arsenite oxidase from various bacteria catalyses the oxidation of arsenite to arsenate and is being developed as a biosensor for arsenite. The arsenite oxidase from Rhizobium sp. str. NT-26 (a member of the Alphaproteobacteria) is a heterotetramer consisting of a large catalytic subunit (AioA), which contains a molybdenum centre and a 3Fe-4S cluster, and a small subunit (AioB) containing a Rieske 2Fe-2S cluster. Stopped-flow spectroscopy and isothermal titration calorimetry (ITC) have been used to better understand electron transfer through the redox-active centres of the enzyme, which is essential for biosensor development. Results show that oxidation of arsenite at the active site is extremely fast with a rate of >4000s-1 and reduction of the electron acceptor is rate-limiting. An AioB-F108A mutation results in increased activity with the artificial electron acceptor DCPIP and decreased activity with cytochrome c, which in the latter as demonstrated by ITC is not due to an effect on the protein-protein interaction but instead to an effect on electron transfer. These results provide further support that the AioB F108 is important in electron transfer between the Rieske subunit and cytochrome c and its absence in the arsenite oxidases from the Betaproteobacteria may explain the inability of these enzymes to use this electron acceptor.


Assuntos
Citocromos c/metabolismo , Transporte de Elétrons/fisiologia , Oxirredutases/metabolismo , Arsenitos/metabolismo , Betaproteobacteria/metabolismo , Catálise , Domínio Catalítico/fisiologia , Elétrons , Molibdênio/metabolismo , Oxirredução , Mapas de Interação de Proteínas/fisiologia , Subunidades Proteicas/metabolismo
15.
J Biol Chem ; 291(3): 1162-74, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26553877

RESUMO

We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD(+)-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its Mo(V) state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center.


Assuntos
Proteínas de Bactérias/metabolismo , Cupriavidus necator/enzimologia , Formiato Desidrogenases/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Metaloproteínas/metabolismo , Modelos Moleculares , Molibdênio/química , Proteínas de Bactérias/química , Biocatálise , Temperatura Baixa , Espectroscopia de Ressonância de Spin Eletrônica , Mononucleotídeo de Flavina , Formiato Desidrogenases/química , Formiato Desidrogenases/isolamento & purificação , Formiatos/química , Formiatos/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Ferro-Enxofre/química , Cinética , Metaloproteínas/química , NAD/química , NAD/metabolismo , Oxirredução , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Espectrofotometria
16.
Biochemistry ; 52(46): 8295-303, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24147957

RESUMO

Sulfite oxidase (SO) is an essential molybdoenzyme for humans, catalyzing the final step in the degradation of sulfur-containing amino acids and lipids, which is the oxidation of sulfite to sulfate. The catalytic site of SO consists of a molybdenum ion bound to the dithiolene sulfurs of one molybdopterin (MPT) molecule, carrying two oxygen ligands, and is further coordinated by the thiol sulfur of a conserved cysteine residue. We have exchanged four non-active site cysteines in the molybdenum cofactor (Moco) binding domain of human SO (SOMD) with serine using site-directed mutagenesis. This facilitated the specific replacement of the active site Cys207 with selenocysteine during protein expression in Escherichia coli. The sulfite oxidizing activity (kcat/KM) of SeSOMD4Ser was increased at least 1.5-fold, and the pH optimum was shifted to a more acidic value compared to those of SOMD4Ser and SOMD4Cys(wt). X-ray absorption spectroscopy revealed a Mo(VI)-Se bond length of 2.51 Å, likely caused by the specific binding of Sec207 to the molybdenum, and otherwise rather similar square-pyramidal S/Se(Cys)O2Mo(VI)S2(MPT) site structures in the three constructs. The low-pH form of the Mo(V) electron paramagnetic resonance (EPR) signal of SeSOMD4Ser was altered compared to those of SOMD4Ser and SOMD4Cys(wt), with g1 in particular shifted to a lower magnetic field, due to the Se ligation at the molybdenum. In contrast, the Mo(V) EPR signal of the high-pH form was unchanged. The substantially stronger effect of substituting selenocysteine for cysteine at low pH as compared to high pH is most likely due to the decreased covalency of the Mo-Se bond.


Assuntos
Domínio Catalítico , Molibdênio/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Selenocisteína/química , Coenzimas , Cisteína , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Metaloproteínas , Cofatores de Molibdênio , Pteridinas , Espectroscopia por Absorção de Raios X
17.
Biochemistry ; 52(37): 6396-411, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23952479

RESUMO

The allosteric regulation of substrate channeling in tryptophan synthase involves ligand-mediated allosteric signaling that switches the α- and ß-subunits between open (low activity) and closed (high activity) conformations. This switching prevents the escape of the common intermediate, indole, and synchronizes the α- and ß-catalytic cycles. (19)F NMR studies of bound α-site substrate analogues, N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), were found to be sensitive NMR probes of ß-subunit conformation. Both the internal and external aldimine F6 complexes gave a single bound peak at the same chemical shift, while α-aminoacrylate and quinonoid F6 complexes all gave a different bound peak shifted by +1.07 ppm. The F9 complexes exhibited similar behavior, but with a corresponding shift of -0.12 ppm. X-ray crystal structures show the F6 and F9 CF3 groups located at the α-ß subunit interface and report changes in both the ligand conformation and the surrounding protein microenvironment. Ab initio computational modeling suggests that the change in (19)F chemical shift results primarily from changes in the α-site ligand conformation. Structures of α-aminoacrylate F6 and F9 complexes and quinonoid F6 and F9 complexes show the α- and ß-subunits have closed conformations wherein access of ligands into the α- and ß-sites from solution is blocked. Internal and external aldimine structures show the α- and ß-subunits with closed and open global conformations, respectively. These results establish that ß-subunits exist in two global conformational states, designated open, where the ß-sites are freely accessible to substrates, and closed, where the ß-site portal into solution is blocked. Switching between these conformations is critically important for the αß-catalytic cycle.


Assuntos
Regulação Alostérica/fisiologia , Conformação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Triptofano Sintase/química , Cristalografia por Raios X , Indóis/química , Ligantes , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Salmonella typhimurium/enzimologia , Serina/metabolismo , Triptofano Sintase/metabolismo
18.
J Biol Chem ; 287(7): 4562-71, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22170050

RESUMO

14-3-3 proteins regulate key processes in eukaryotic cells including nitrogen assimilation in plants by tuning the activity of nitrate reductase (NR), the first and rate-limiting enzyme in this pathway. The homodimeric NR harbors three cofactors, each of which is bound to separate domains, thus forming an electron transfer chain. 14-3-3 proteins inhibit NR by binding to a conserved phosphorylation site localized in the linker between the heme and molybdenum cofactor-containing domains. Here, we have investigated the molecular mechanism of 14-3-3-mediated NR inhibition using a fragment of the enzyme lacking the third domain, allowing us to analyze electron transfer from the heme cofactor via the molybdenum center to nitrate. The kinetic behavior of the inhibited Mo-heme fragment indicates that the principal point at which 14-3-3 acts is the electron transfer from the heme to the molybdenum cofactor. We demonstrate that this is not due to a perturbation of the reduction potentials of either the heme or the molybdenum center and conclude that 14-3-3 most likely inhibits nitrate reductase by inducing a conformational change that significantly increases the distance between the two redox-active sites.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrato Redutase/metabolismo , Multimerização Proteica/fisiologia , Proteínas 14-3-3/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte de Elétrons/fisiologia , Heme/genética , Heme/metabolismo , Nitrato Redutase/genética , Oxirredução , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína
19.
Trends Biochem Sci ; 33(6): 254-64, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18486479

RESUMO

Substrate channeling between enzymes has an important role in cellular metabolism by compartmentalizing cytoplasmic synthetic processes. The bacterial tryptophan synthases are multienzyme nanomachines that catalyze the last two steps in L-tryptophan biosynthesis. The common metabolite indole is transferred from one enzyme to the other in each alphabeta-dimeric unit of the alpha2beta2 complex via an interconnecting 25-A-long tunnel. Recent solution studies of the Salmonella typhimurium alpha2beta2 complex coupled with X-ray crystal-structure determinations of complexes with substrates, intermediates and substrate analogs have driven important breakthroughs concerning the identification of the linkages between the bi-enzyme complex structure, catalysis at the alpha- and beta-active sites, and the allosteric regulation of substrate channeling.


Assuntos
Proteínas de Bactérias/química , Salmonella typhimurium/enzimologia , Triptofano Sintase/química , Regulação Alostérica/fisiologia , Proteínas de Bactérias/metabolismo , Catálise , Indóis/química , Indóis/metabolismo , Estrutura Quaternária de Proteína/fisiologia , Triptofano/biossíntese , Triptofano/química , Triptofano Sintase/metabolismo
20.
J Phys Chem B ; 127(39): 8382-8392, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37728992

RESUMO

The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.


Assuntos
Cupriavidus necator , Formiato Desidrogenases , Formiato Desidrogenases/química , Dióxido de Carbono/química , Oxirredução , Formiatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA