Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Plant Physiol ; 194(2): 1166-1180, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878763

RESUMO

Calcium (Ca2+) is a major ion in living organisms, where it acts as a second messenger for various biological phenomena. The Golgi apparatus retains a higher Ca2+ concentration than the cytosol and returns cytosolic Ca2+ to basal levels after transient elevation in response to environmental stimuli such as osmotic stress. However, the Ca2+ transporters localized in the Golgi apparatus of plants have not been clarified. We previously found that a wild-type (WT) salt-tolerant Arabidopsis (Arabidopsis thaliana) accession, Bu-5, showed osmotic tolerance after salt acclimatization, whereas the Col-0 WT did not. Here, we isolated a Bu-5 background mutant gene, acquired osmotolerance-defective 6 (aod6), which reduces tolerance to osmotic, salt, and oxidative stresses, with a smaller plant size than the WT. The causal gene of the aod6 mutant encodes CATION CALCIUM EXCHANGER4 (CCX4). The aod6 mutant was more sensitive than the WT to both deficient and excessive Ca2+. In addition, aod6 accumulated higher Ca2+ than the WT in the shoots, suggesting that Ca2+ homeostasis is disturbed in aod6. CCX4 expression suppressed the Ca2+ hypersensitivity of the csg2 (calcium sensitive growth 2) yeast (Saccharomyces cerevisiae) mutant under excess CaCl2 conditions. We also found that aod6 enhanced MAP kinase 3/6 (MPK3/6)-mediated immune responses under osmotic stress. Subcellular localization analysis of mGFP-CCX4 showed GFP signals adjacent to the trans-Golgi apparatus network and co-localization with Golgi apparatus-localized markers, suggesting that CCX4 localizes in the Golgi apparatus. These results suggest that CCX4 is a Golgi apparatus-localized transporter involved in the Ca2+ response and plays important roles in osmotic tolerance, shoot Ca2+ content, and normal growth of Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Plant Physiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805221

RESUMO

Heme, an organometallic tetrapyrrole, is widely engaged in oxygen transport, electron delivery, enzymatic reactions, and signal transduction. In plants, it is also involved in photomorphogenesis and photosynthesis. HEME OXYGENASE 1 (HO1) initiates the first committed step in heme catabolism, and it has generally been thought that this reaction takes place in chloroplasts. Here, we show that HO1 in both Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) has two transcription start sites (TSSs), producing long (HO1L) and short (HO1S) transcripts. Their products localize to the chloroplast and the cytosol, respectively. During early development or de-etiolation, the HO1L/HO1S ratio gradually increases. Light perception via phytochromes and cryptochromes elevates the HO1L/HO1S ratio in the whole seedling through the functions of ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH) and through the suppression of DE-ETIOLATED 1 (DET1), CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), and PHYTOCHROME INTERACTING FACTORs (PIFs). HO1L introduction complements the HO1-deficient mutant; surprisingly, HO1S expression also restores the short hypocotyl phenotype and high pigment content and helps the mutant recover from the genomes uncoupled (gun) phenotype. This indicates the assembly of functional phytochromes within these lines. Furthermore, our findings support the hypothesis that a mobile heme signal is involved in retrograde signaling from the chloroplast. Altogether, our work clarifies the molecular mechanism of HO1 TSS regulation and highlights the presence of a cytosolic bypass for heme catabolism in plant cells.

3.
Planta ; 257(4): 64, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36811672

RESUMO

MAIN CONCLUSION: Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, is a useful genetic approach for functional analysis of ATCSLDs in specific cells and tissues in plants. Stomata are key cellular structures for gas and water exchange in plants and their development is influenced by several genes. We found the A. thaliana bagel23-D (bgl23-D) mutant showing abnormal bagel-shaped single guard cells. The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. The dominant character of bgl23-D was used to inhibit ATCSLD5 function in specific cells and tissues. Transgenic A. thaliana expressing bgl23-D cDNA with the promoter of stomata lineage genes, SDD1, MUTE, and FAMA, showed bagel-shaped stomata as observed in the bgl23-D mutant. Especially, the FAMA promoter exhibited a higher frequency of bagel-shaped stomata with severe cytokinesis defects. Expression of bgl23-D cDNA in the tapetum with SP11 promoter or in the anther with ATSP146 promoter induced defects in exine pattern and pollen shape, novel phenotypes that were not shown in the bgl23-D mutant. These results indicated that bgl23-D inhibited unknown ATCSLD(s) that exert the function of exine formation in the tapetum. Furthermore, transgenic A. thaliana expressing bgl23-D cDNA with SDD1, MUTE, and FAMA promoters showed enhanced rosette diameter and increased leaf growth. Taken together, these findings suggest that the bgl23-D mutation could be a helpful genetic tool for functional analysis of ATCSLDs and manipulating plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Citocinese , Alelos , DNA Complementar , Proteínas de Arabidopsis/metabolismo , Pólen/genética , Células-Tronco/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Proc Natl Acad Sci U S A ; 117(40): 25150-25158, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32968023

RESUMO

The plasma membrane (PM) acts as the interface between intra- and extracellular environments and exhibits a tightly regulated molecular composition. The composition and amount of PM proteins are regulated by balancing endocytic and exocytic trafficking in a cargo-specific manner, according to the demands of specific cellular states and developmental processes. In plant cells, retrieval of membrane proteins from the PM depends largely on clathrin-mediated endocytosis (CME). However, the mechanisms for sorting PM proteins during CME remain ambiguous. In this study, we identified a homologous pair of ANTH domain-containing proteins, PICALM1a and PICALM1b, as adaptor proteins for CME of the secretory vesicle-associated longin-type R-SNARE VAMP72 group. PICALM1 interacted with the SNARE domain of VAMP72 and clathrin at the PM. The loss of function of PICALM1 resulted in faulty retrieval of VAMP72, whereas general endocytosis was not considerably affected by this mutation. The double mutant of PICALM1 exhibited impaired vegetative development, indicating the requirement of VAMP72 recycling for normal plant growth. In the mammalian system, VAMP7, which is homologous to plant VAMP72, is retrieved from the PM via the interaction with a clathrin adaptor HIV Rev-binding protein in the longin domain during CME, which is not functional in the plant system, whereas retrieval of brevin-type R-SNARE members is dependent on a PICALM1 homolog. These results indicate that ANTH domain-containing proteins have evolved to be recruited distinctly for recycling R-SNARE proteins and are critical to eukaryote physiology.


Assuntos
Endocitose/genética , Proteínas de Membrana/genética , Transporte Proteico/genética , Proteínas R-SNARE/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/genética , Clatrina/metabolismo , Eucariotos/genética , Exocitose/genética , Regulação da Expressão Gênica de Plantas/genética , Células Vegetais/metabolismo , Domínios Proteicos/genética
5.
Biosci Biotechnol Biochem ; 86(5): 628-634, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35266506

RESUMO

We previously reported that prostaglandin (PG)D2 and its isosteric analog, 11-deoxy-11-methylene-PGD2 (11d-11m-PGD2), promote adipogenesis in 3T3-L1 cells during the maturation phase. Focusing on the differentiation phase, although both PGs inhibited adipogenesis, this effect was canceled out by PGI2 and PGJ2 derivatives. Thus, PGD2 and 11d-11m-PGD2 play different roles during the phases, but do not affect PGI2- and PGJ2-derivative-induced adipogenesis.


Assuntos
Adipogenia , Prostaglandina D2 , Células 3T3-L1 , Animais , Diferenciação Celular , Camundongos , Prostaglandina D2/farmacologia
6.
Plant J ; 102(1): 129-137, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31755157

RESUMO

Bundle Sheath Defective 2, BSD2, is a stroma-targeted protein initially identified as a factor required for the biogenesis of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in maize. Plants and algae universally have a homologous gene for BSD2 and its deficiency causes a RuBisCO-less phenotype. As RuBisCO can be the rate-limiting step in CO2 assimilation, the overexpression of BSD2 might improve photosynthesis and productivity through the accumulation of RuBisCO. To examine this hypothesis, we produced BSD2 overexpression lines in Arabidopsis. Compared with wild type, the BSD2 overexpression lines BSD2ox-2 and BSD2ox-3 expressed 4.8-fold and 8.8-fold higher BSD2 mRNA, respectively, whereas the empty-vector (EV) harbouring plants had a comparable expression level. The overexpression lines showed a significantly higher CO2 assimilation rate per available CO2 and productivity than EV plants. The maximum carboxylation rate per total catalytic site was accelerated in the overexpression lines, while the number of total catalytic sites and RuBisCO content were unaffected. We then isolated recombinant BSD2 (rBSD2) from E. coli and found that rBSD2 reduces disulfide bonds using reductants present in vivo, for example glutathione, and that rBSD2 has the ability to reactivate RuBisCO that has been inactivated by oxidants. Furthermore, 15% of RuBisCO freshly isolated from leaves of EV was oxidatively inactivated, as compared with 0% in BSD2-overexpression lines, suggesting that the overexpression of BSD2 maintains RuBisCO to be in the reduced active form in vivo. Our results demonstrated that the overexpression of BSD2 improves photosynthetic efficiency in Arabidopsis and we conclude that it is involved in mediating RuBisCO activation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fotossíntese/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Escherichia coli , Regulação da Expressão Gênica de Plantas , Proteínas Recombinantes , Ribulose-Bifosfato Carboxilase/metabolismo
7.
Biosci Biotechnol Biochem ; 85(4): 902-906, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33580679

RESUMO

Indole-3-acetic acid (IAA) produced by intestinal bacteria from tryptophan in dietary proteins is considered to suppress the inflammatory response through aryl hydrocarbon receptor (AhR) activation. However, AhR activation was not involved in the downregulation of tumor necrosis factor α (TNFα) expression induced by IAA in Caco-2 cells. The activation of unidentified IAA receptors might attenuate the inflammatory response to TNFα in colorectal cancer cells.


Assuntos
Ácidos Indolacéticos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Necrose Tumoral alfa/genética , Células CACO-2 , Humanos , Inflamação/genética
8.
Biosci Biotechnol Biochem ; 85(9): 2011-2021, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34245564

RESUMO

Most studies of indole derivatives such as IAA produced by intestinal microbiota have been based on the premise that binding to AhR leads to biological responses. We previously revealed that IAA binds to more than one receptor, and thus the present study aimed to identify a new receptor for IAA and analyze its mechanism of action. We found that the TLR4 antagonist TAK-242 did not affect the IAA-induced increase in CYP1A1 expression at 3 h and decreased TNFα expression at 8 days. However, TAK-242 alleviated decreased TNFα expression induced by IAA at 2 days and promoted IAA-induced increased CYP1A1 expression by inhibiting JNK activation at 8 days. Taken together, TLR4 may be a novel IAA receptor with signaling pathways that regulate CYP1A1 and TNFα expression depending on the culture stage of Caco-2 cells. Furthermore, our findings offer important clues for elucidating the action mechanisms of indole derivatives that affect hosts.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Ácidos Indolacéticos/metabolismo , Receptor 4 Toll-Like/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Células CACO-2 , Ativação Enzimática , Humanos , MAP Quinase Quinase 4/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
9.
J Exp Bot ; 71(6): 2085-2097, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31844896

RESUMO

The genome of Arabidopsis encodes more than 60 mitogen-activated protein kinase kinase (MAPKK) kinases (MAPKKKs); however, the functions of most MAPKKKs and their downstream MAPKKs are largely unknown. Here, MAPKKK δ-1 (MKD1), a novel Raf-like MAPKKK, was isolated from Arabidopsis as a subunit of a complex including the transcription factor AtNFXL1, which is involved in the trichothecene phytotoxin response and in disease resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A MKD1-dependent cascade positively regulates disease resistance against PstDC3000 and the trichothecene mycotoxin-producing fungal pathogen Fusarium sporotrichioides. MKD1 expression was induced by trichothecenes derived from Fusarium species. MKD1 directly interacted with MKK1 and MKK5 in vivo, and phosphorylated MKK1 and MKK5 in vitro. Correspondingly, mkk1 mutants and MKK5RNAi transgenic plants showed enhanced susceptibility to F. sporotrichioides. MKD1 was required for full activation of two MAPKs (MPK3 and MPK6) by the T-2 toxin and flg22. Finally, quantitative phosphoproteomics suggested that an MKD1-dependent cascade controlled phosphorylation of a disease resistance protein, SUMO, and a mycotoxin-detoxifying enzyme. Our findings suggest that the MKD1-MKK1/MKK5-MPK3/MPK6-dependent signaling cascade is involved in the full immune responses against both bacterial and fungal infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Quinases de Proteína Quinase Ativadas por Mitógeno , Micoses , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fusarium , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
10.
Biosci Biotechnol Biochem ; 84(1): 154-158, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31794328

RESUMO

Malectin is a maltose-binding endoplasmic reticulum protein conserved in animals. In Arabidopsis thaliana, we identified four genes that encode malectin-like domain (MLD)- and leucine-rich repeat (LRR)-containing proteins (AtMLLRs): two were receptor-like proteins (AtMLLR1 and 2) and the other two were extracellular proteins (AtMLLR3 and 4). The promoter:G3GFP+promoter:GUS assay indicated the organ- and cell-specific expression of the AtMLLR2 and AtMLLR3 genes.Abbreviations: Cmr: chloramphenicol-resistance marker; G3GFP: G3 green fluorescent protein; GUS: ß-glucuronidase; KD: kinase domain; LRR: leucine-rich repeat; MLD: malectin-like domain; RLK: receptor-like kinase; SP: signal peptide; TMD: transmembrane domain; Tnos: nopaline synthase terminator.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Expressão Gênica , Lectinas/genética , Proteínas de Membrana/genética , Proteínas/genética , Retículo Endoplasmático/metabolismo , Glucuronidase/química , Proteínas de Fluorescência Verde/química , Leucina/genética , Proteínas de Repetições Ricas em Leucina , Microscopia de Fluorescência , Filogenia , Plantas Geneticamente Modificadas , Domínios Proteicos/genética , Coloração e Rotulagem
11.
Biochem Biophys Res Commun ; 510(4): 649-655, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30739789

RESUMO

Intestinal bacteria produce skatole (3-methylindole) from tryptophan in dietary proteins and ingesting large quantities of animal protein is associated with increased fecal skatole concentrations. Although possibly associated with disrupted intestinal homeostasis, the influence of skatole on intestinal epithelial cellular function has not been characterized in detail. The present study aimed to determine whether skatole induces intestinal epithelial cell (IEC) dysfunction. We found that skatole dose-dependently caused IEC death and time-dependently induced IEC apoptosis. Since skatole directly interacts with aryl hydrocarbon receptors (AhR), we investigated whether these receptors influence the skatole-induced death of IEC. In addition to increased AhR transcriptional activity induced by skatole, the AhR antagonist CH223191 partially suppressed of skatole-induced IEC death. Extracellular signal-related kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) are mitogen-activated protein kinases (MAPK) induced by skatole. None of them were repressed by CH223191, whereas the p38 inhibitor SB203580 promoted skatole-induced IEC death. These findings together indicated that skatole induces both AhR-dependent activation pathways and the AhR-independent activation of p38, consequently regulating the amount of IEC death. Accumulating evidence indicates that consuming large amounts of animal protein is associated with the pathogenesis and progression of inflammatory bowel diseases (IBD). Thus, intestinal skatole production induced by large amounts of dietary animal protein might be associated via IEC death with intestinal pathologies such as IBD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mucosa Intestinal/citologia , Intestinos/microbiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Escatol/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Células CACO-2 , Morte Celular , Ativação Enzimática , Humanos , Mucosa Intestinal/metabolismo
12.
J Exp Bot ; 69(7): 1615-1633, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29390074

RESUMO

The specialized multilayered pollen wall plays multiple roles to ensure normal microspore development. The major components of the pollen wall (e.g. sporopollenin and lipidic precursors) are provided from the tapetum. Material export from the endoplasmic reticulum (ER) is mediated by coat protein complex II (COPII) vesicles. The Arabidopsis thaliana genome encodes seven homologs of SEC23, a COPII component. However, the functional importance of this diversity remains elusive. Here, we analyzed knockout and knockdown lines for AtSEC23A and AtSEC23D, two of the A. thaliana SEC23 homologs, respectively. Single atsec23a and atsec23d mutant plants, despite normal fertility, showed an impaired exine pattern. Double atsec23ad mutant plants were semi-sterile and exhibited developmental defects in pollen and tapetal cells. Pollen grains of atsec23ad had defective exine and intine, and showed signs of cell degeneration. Moreover, the development of tapetal cells was altered, with structural abnormalities in organelles. AtSEC23A and AtSEC23D exhibited the characteristic localization pattern of COPII proteins and were highly expressed in the tapetum. Our work suggests that AtSEC23A and AtSEC23D may organize pollen wall development and exine patterning by regulating ER export of lipids and proteins necessary for pollen wall formation. Also, our results shed light on the functional heterogeneity of SEC23 homologs.


Assuntos
Arabidopsis/genética , Parede Celular/metabolismo , Pólen/citologia , Arabidopsis/citologia , Arabidopsis/metabolismo , Biopolímeros/metabolismo , Carotenoides/metabolismo , Retículo Endoplasmático/metabolismo , Gametogênese Vegetal/fisiologia , Pólen/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-30393164

RESUMO

Prostaglandin (PG) D2 is relatively unstable and dehydrated non-enzymatically into PGJ2 derivatives, which are known to serve as pro-adipogenic factors by activating peroxisome proliferator-activated receptor (PPAR) γ, a master regulator of adipogenesis. 11-Deoxy-11-methylene-PGD2 (11d-11m-PGD2) is a novel, chemically stable, isosteric analogue of PGD2 in which the 11-keto group is replaced by an exocyclic methylene. Here we attempted to investigate pro-adipogenic effects of PGD2 and 11d-11m-PGD2 and to compare the difference in their ways during the maturation phase of cultured adipocytes. The dose-dependent study showed that 11d-11m-PGD2 was significantly more potent than natural PGD2 to stimulate the storage of fats suppressed in the presence of indomethacin, a cyclooxygenase inhibitor. These pro-adipogenic effects were caused by the up-regulation of adipogenesis as evident with higher gene expression levels of adipogenesis markers. Analysis of transcript levels revealed the enhanced gene expression of two subtypes of cell-surface membrane receptors for PGD2, namely the prostanoid DP1 and DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)) receptors together with lipocalin-type PGD synthase during the maturation phase. Specific agonists for DP1, CRTH2, and PPARγ were appreciably effective to rescue adipogenesis attenuated by indomethacin. The action of PGD2 was attenuated by specific antagonists for DP1 and PPARγ. By contrast, the effect of 11d-11m-PGD2 was more potently interfered by a selective antagonist for CRTH2 than that for DP1 while PPARγ antagonist GW9662 had almost no inhibitory effects. These results suggest that PGD2 exerts its pro-adipogenic effect principally through the mediation of DP1 and PPARγ, whereas the stimulatory effect of 11d-11m-PGD2 on adipogenesis occurs preferentially by the interaction with CRTH2.


Assuntos
Adipogenia/efeitos dos fármacos , PPAR gama/genética , Prostaglandina D2/análogos & derivados , Prostaglandina D2/química , Receptores Imunológicos/química , Receptores de Prostaglandina/química , Células 3T3 , Adipócitos/efeitos dos fármacos , Anilidas/farmacologia , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indometacina/farmacologia , Camundongos , PPAR gama/antagonistas & inibidores , Prostaglandina D2/antagonistas & inibidores , Prostaglandina D2/farmacologia , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Células Th2/efeitos dos fármacos
14.
Plasmid ; 92: 1-11, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499723

RESUMO

Analyses of the subcellular localization of proteins and protein-protein interaction networks are essential to uncover the molecular basis of diverse biological processes in plants. To this end, we have created a Gateway cloning-compatible vector system, named dual-site (DS) Gateway cloning system to allow simple cloning of two expression cassettes in a binary vector and to express them simultaneously in plant cells. In the DS Gateway cloning system, (i) a moderate constitutive nopaline synthase promoter (Pnos), which is much suitable for localization analysis, is used to guide each expression cassette, (ii) four series of vectors with different plant resistance markers are established, (iii) N-terminal fusion with 6 fluorescent proteins and 7 epitope tags is available, (iv) both N- and C-terminal fusions with split enhanced yellow fluorescent protein (EYFP) are possible for efficient detection of protein-protein interactions using a bimolecular fluorescence complementation (BiFC) assay. The usefulness of the DS Gateway cloning system has been demonstrated by the analysis of the expression and the subcellular localization patterns of two Golgi proteins in stable expression system using A. thaliana, and by the analyses of interactions between subunits of coat protein complex II (COPII) both in transient and stable expression systems using Japanese leek and A. thaliana, respectively. The DS Gateway cloning system provides a multipurpose, efficient expression tool in gene function analyses and especially suitable for investigating interactions and subcellular localization of two proteins in living plant cells.


Assuntos
Clonagem Molecular/métodos , Transformação Genética , Arabidopsis/genética , Expressão Gênica , Genes de Plantas , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Fases de Leitura Aberta
15.
Artigo em Inglês | MEDLINE | ID: mdl-26928048

RESUMO

Arachidonic acid (AA) and the related prostanoids exert complex effects on the adipocyte differentiation depending on the culture conditions and life stages. Here, we investigated the effect of the pretreatment of cultured 3T3-L1 preadipocytes with exogenous AA during the differentiation phase without 3-isobutyl-1-methylxanthine (IBMX), a cAMP-elevating agent, on the storage of fats after the maturation phase. This pretreatment with AA stimulated appreciably adipogenesis after the maturation phase as evident with the up-regulated gene expression of adipogenic markers. The stimulatory effect of the pretreatment with AA was attenuated by the co-incubation with each of cyclooxygenase (COX) inhibitors. Among exogenous prostanoids and related compounds, the pretreatment with MRE-269, a selective agonist of the IP receptor for prostaglandin (PG) I2, strikingly stimulated the storage of fats in adipocytes. The gene expression analysis of arachidonate COX pathway revealed that the transcript levels of inducible COX-2, membrane-bound PGE synthase-1, and PGF synthase declined more greatly in cultured preadipocytes treated with AA. By contrast, the expression levels of COX-1, cytosolic PGE synthase, and PGI synthase remained constitutive. The treatment of cultured preadipocytes with AA resulted in the decreased synthesis of PGE2 and PGF2α serving as anti-adipogenic PGs although the biosynthesis of pro-adipogenic PGI2 was up-regulated during the differentiation phase. Moreover, the gene expression levels of EP4 and FP, the respective prostanoid receptors for PGE2 and PGF2α, were gradually suppressed by the supplementation with AA, whereas that of IP for PGI2 remained relatively constant. Collectively, these results suggest the predominant role of endogenous PGI2 in the stimulatory effect of the pretreatment of cultured preadipoccytes with AA during the differentiation phase without IBMX on adipogenesis after the maturation phase.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Ácido Araquidônico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , 1-Metil-3-Isobutilxantina , Células 3T3-L1 , 6-Cetoprostaglandina F1 alfa/metabolismo , Acetatos/farmacologia , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprosta/metabolismo , Dinoprostona/metabolismo , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Hidroxiprostaglandina Desidrogenases/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Pirazinas/farmacologia , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo
16.
Biosci Biotechnol Biochem ; 80(4): 694-705, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26745465

RESUMO

µ1-Adaptin of adaptor protein (AP) 1 complex, AP1M, is generally accepted to load cargo proteins into clathrin-coated vesicles (CCVs) at the trans-Golgi network through its binding to cargo-recognition sequences (CRSs). Plant vacuolar-sorting receptors (VSRs) function in sorting vacuolar proteins, which are reportedly mediated by CCV. We herein investigated the involvement of CRSs of Arabidopsis thaliana VSR4 in the sorting of VSR4. The results obtained showed the increased localization of VSR4 at the plasma membrane or vacuoles by mutations in CRSs including the tyrosine-sorting motif YMPL or acidic dileucine-like motif EIRAIM, respectively. Interaction analysis using the bimolecular fluorescence complementation (BiFC) system, V10-BiFC, which we developed, indicated an interaction between VSR4 and AP1M2, AP1M type 2, which was attenuated by a YMPL mutation, but not influenced by an EIRAIM mutation. These results demonstrated the significance of the recognition of YMPL in VSR4 by AP1M2 for the post-Golgi sorting of VSR4.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Tirosina/metabolismo , Vacúolos/metabolismo , Proteínas de Arabidopsis/genética , Frações Subcelulares/metabolismo
17.
Biosci Biotechnol Biochem ; 79(12): 1995-2006, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26193449

RESUMO

Protein-protein interactions (PPI) play key roles in various biological processes. The bimolecular fluorescence complementation (BiFC) assay is an excellent tool for routine PPI analyses in living cells. We developed new Gateway vectors for a high-throughput BiFC analysis of plants, adopting a monomeric Venus split just after the tenth ß-strand, and analyzed the interaction between Arabidopsis thaliana coated vesicle coatmers, the clathrin heavy chain (CHC), and the clathrin light chain (CLC). In competitive BiFC tests, CLC interacted with CHC through a coiled-coil motif in the middle section of CLC. R1340, R1448, and K1512 in CHC and W94 in CLC are potentially key amino acids underlying the inter-chain interaction, consistent with analyses based on homology modeling. Our Gateway BiFC system, the V10-BiFC system, provides a useful tool for a PPI analysis in living plant cells. The CLC-CHC interaction identified may facilitate clathrin triskelion assembly needed for cage formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clatrina/metabolismo , Vetores Genéticos/genética , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Clatrina/química , Clatrina/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência
18.
Biomed Res ; 45(2): 57-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556263

RESUMO

Although patients with chronic kidney disease (CKD) have a higher risk of colorectal cancer (CRC) aggravation, the connection between these two diseases is not well understood. Recent studies have shown that both CKD and CRC aggravation are closely related to an increased abundance of indole-producing Fusobacterium nucleatum in the gut. The indole absorbed from the gut is eventually metabolized to indoxyl sulfate in the liver. Since indoxyl sulfate is involved not only in accelerating CKD progression but also in the initiation and development of its associated complications, the present study aimed to clarify whether indoxyl sulfate induces the proliferation of CRC cells. This study found that indoxyl sulfate induced the proliferation of CRC-derived HCT-116 cells by activating the aryl hydrocarbon receptor (AhR) and the proto-oncogene Akt. The AhR antagonist CH223191 and Akt inhibitor MK2206 suppressed indoxyl sulfate-induced proliferation of HCT-116 cells. We also found that indoxyl sulfate upregulated epidermal growth factor receptor (EGFR) expression, which is associated with poor prognosis of CRC, whereas CH223191 and MK2206 repressed EGFR expression. Furthermore, indoxyl sulfate increased the sensitivity of CRC cells to EGF by upregulating EGFR expression. These findings suggest that indoxyl sulfate may be an important link between CKD and CRC aggravation.


Assuntos
Compostos Azo , Neoplasias Colorretais , Pirazóis , Insuficiência Renal Crônica , Humanos , Indicã/farmacologia , Indicã/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores ErbB/genética , Indóis , Proliferação de Células
19.
Front Plant Sci ; 15: 1304366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318497

RESUMO

We have previously reported a wide variation in salt tolerance among Arabidopsis thaliana accessions and identified ACQOS, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, as the causal gene responsible for the disturbance of acquired osmotolerance induced after mild salt stress. ACQOS is conserved among Arabidopsis osmosensitive accessions, including Col-0. In response to osmotic stress, it induces detrimental autoimmunity, resulting in suppression of osmotolerance, but how ACQOS triggers autoimmunity remains unclear. Here, we screened acquired osmotolerance (aot) mutants from EMS-mutagenized Col-0 seeds and isolated the aot19 mutant. In comparison with the wild type (WT), this mutant had acquired osmotolerance and decreased expression levels of pathogenesis-related genes. It had a mutation in a splicing acceptor site in NUCLEOPORIN 85 (NUP85), which encodes a component of the nuclear pore complex. A mutant with a T-DNA insertion in NUP85 acquired osmotolerance similar to aot19. The WT gene complemented the osmotolerant phenotype of aot19. We evaluated the acquired osmotolerance of five nup mutants of outer-ring NUPs and found that nup96, nup107, and aot19/nup85, but not nup43 or nup133, showed acquired osmotolerance. We examined the subcellular localization of the GFP-ACQOS protein and found that its nuclear translocation in response to osmotic stress was suppressed in aot19. We suggest that NUP85 is essential for the nuclear translocation of ACQOS, and the loss-of-function mutation of NUP85 results in acquired osmotolerance by suppressing ACQOS-induced autoimmunity in response to osmotic stress.

20.
Planta ; 238(3): 561-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23779001

RESUMO

Anterograde vesicle transport from the endoplasmic reticulum to the Golgi apparatus is the start of protein transport through the secretory pathway, in which the transport is mediated by coat protein complex II (COPII)-coated vesicles. Therefore, most proteins synthesized on the endoplasmic reticulum are loaded as cargo into COPII vesicles. The COPII is composed of the small GTPase Sar1 and two types of protein complexes (Sec23/24 and Sec13/31). Of these five COPII components, Sec24 is thought to recognize cargo that is incorporated into COPII vesicles by directly interacting with the cargo. The Arabidopsis genome encodes three types of Sec24 homologs (AtSec24A, AtSec24B, and AtSec24C). The subcellular dynamics and function of AtSec24A have been characterized. The intracellular distributions and functions of other AtSec24 proteins are not known, and the functional differences among the three AtSec24s remain unclear. Here, we found that all three AtSec24s were expressed in similar parts of the plant body and showed the same subcellular localization pattern. AtSec24B knockout plant, but not AtSec24C knockdown plant, showed mild male sterility with reduction of pollen germination. Significant decrease of AtSec24B and AtSec24C expression affected male and female gametogenesis in Arabidopsis thaliana. Our results suggested that the redundant function of AtSec24B and AtSec24C is crucial for the development of plant reproductive cells. We propose that the COPII transport is involved in male and female gametogenesis in planta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Gametogênese Vegetal/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Gametogênese Vegetal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA