RESUMO
The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aß1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aß1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aß1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aß1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aß plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.
Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Fator H do Complemento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Apolipoproteínas E/química , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Peptídeos beta-Amiloides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
The alternative pathway of complement is an important part of the innate immunity response against foreign particles invading the human body. To avoid damage to host cells, it needs to be efficiently down-regulated by plasma factor H (FH) as exemplified by various diseases caused by mutations in its domains 19-20 (FH19-20) and 5-7 (FH5-7). These regions are also the main interaction sites for microbial pathogens that bind host FH to evade complement attack. We previously showed that inhibition of FH binding by a recombinant FH5-7 construct impairs survival of FH binding pathogens in human blood. In this study we found that upon exposure to full blood, the addition of FH5-7 reduces survival of, surprisingly, also those microbes that are not able to bind FH. This effect was mediated by inhibition of complement regulation and subsequently enhanced neutrophil phagocytosis by FH5-7. We found that although FH5-7 does not reduce complement regulation in the actual fluid phase of plasma, it reduces regulation on HDL particles in plasma. Using affinity chromatography and mass spectrometry we revealed that FH interacts with serum apolipoprotein E (apoE) via FH5-7 domains. Furthermore, binding of FH5-7 to HDL was dependent on the concentration of apoE on the HDL particles. These findings explain why the addition of FH5-7 to plasma leads to excessive complement activation and phagocytosis of microbes in full anticoagulated blood. In conclusion, our data show how FH interacts with apoE molecules via domains 5-7 and regulates alternative pathway activation on plasma HDL particles.
Assuntos
Apolipoproteínas E/química , Fator H do Complemento/química , Lipoproteínas HDL/química , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Cromatografia de Afinidade , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Humanos , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Espectrometria de Massas , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
ORP10/OSBPL10 is a member of the oxysterol-binding protein family, and genetic variation in OSBPL10 is associated with dyslipidemias and peripheral artery disease. In this study we investigated the ligand binding properties of ORP10 in vitro as well as its localization and function in human HuH7 hepatocytes. The pleckstrin homology (PH) domain of ORP10 selectively interacts with phosphatidylinositol-4-phosphate, while the C-terminal ligand binding domain binds cholesterol and several acidic phospholipids. Full-length ORP10 decorates microtubules (MT), while the ORP10 N-terminal fragment (aa 1-318) localizes at Golgi membranes. Removal of the C-terminal aa 712-764 of ORP10 containing a predicted coiled-coil segment abolishes the MT association, but allows partial Golgi targeting. A PH domain-GFP fusion protein is distributed mainly in the cytosol and the plasma membrane, indicating that the Golgi affinity of ORP10 involves other determinants in addition to the PH domain. HuH7 cells expressing ORP10-specific shRNA display increased accumulation of apolipoprotein B-100 (apoB-100), but not of albumin, in culture medium, and contain reduced levels of intracellular apoB-100. Pulse-chase analysis of cellular [(35)S]apoB-100 demonstrates enhanced apoB-100 secretion by cells expressing ORP10-specific shRNA. The apoB-100 secretion phenotype is replicated in HepG2 cells transduced with the ORP10 shRNA lentiviruses. As a conclusion, the present study dissects the determinants of ORP10 association with MT and the Golgi complex and provides evidence for a specific role of this protein in ß-lipoprotein secretion by human hepatocytes.
Assuntos
Apolipoproteína B-100/metabolismo , Colesterol/metabolismo , Microtúbulos/metabolismo , Receptores de Esteroides/metabolismo , Western Blotting , Linhagem Celular Tumoral , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Imunoprecipitação , Microscopia Confocal , Fosfatidilinositóis/metabolismo , Ligação Proteica , Interferência de RNA , Receptores de Esteroides/genéticaRESUMO
BACKGROUND: The role of intestinal microbiota in inflammatory bowel diseases is intensively researched. Pediatric studies on the relation between microbiota and treatment response are sparse. We aimed to determine whether absolute abundances of gut microbes characterize the response to infliximab induction in pediatric inflammatory bowel disease. METHODS: We recruited pediatric patients with inflammatory bowel disease introduced to infliximab at Children's Hospital, University of Helsinki. Stool samples were collected at 0, 2, and 6 weeks for microbiota and calprotectin analyses. We defined treatment response as fecal calprotectin value <100 µg/g at week 6. Intestinal microbiota were analyzed by 16S ribosomal RNA gene amplicon sequencing using the Illumina MiSeq platform. We analyzed total bacterial counts using quantitative polymerase chain reaction and transformed the relative abundances into absolute abundances based on the total counts. RESULTS: At baseline, the intestinal microbiota in the treatment responsive group (nâ =â 10) showed a higher absolute abundance of Bifidobacteriales and a lower absolute abundance of Actinomycetales than nonresponders (nâ =â 19). The level of inflammation according to fecal calprotectin showed no statistically significant association with the absolute abundances of fecal microbiota. The results on relative abundances differed from the absolute abundances. At the genus level, the responders had an increased relative abundance of Anaerosporobacter but a reduced relative abundance of Parasutterella at baseline. CONCLUSIONS: High absolute abundance of Bifidobacteriales in the gut microbiota of pediatric patients reflects anti-inflammatory characteristics associated with rapid response to therapy. This warrants further studies on whether modification of pretreatment microbiota might improve the outcomes.
We studied absolute and relative abundances of fecal microbiota in relation to response to induction therapy with infliximab in pediatric inflammatory bowel disease. We discovered that a high absolute abundance of anti-inflammatory Bifidobacteriales at baseline associated with response.
Assuntos
Doenças Inflamatórias Intestinais , Microbiota , Humanos , Criança , Infliximab/uso terapêutico , Fator de Necrose Tumoral alfa , Inibidores do Fator de Necrose Tumoral , Doenças Inflamatórias Intestinais/tratamento farmacológico , Fezes/química , Complexo Antígeno L1 Leucocitário/análiseRESUMO
BACKGROUND AND AIMS: Inflammatory bowel diseases [IBDs], Crohn's disease [CD] and ulcerative colitis [UC], are globally increasing chronic gastro-intestinal inflammatory disorders associated with altered gut microbiota. Infliximab [IFX], a tumour necrosis factor [TNF]-alpha blocker, is used to treat IBD patients successfully, though one-third of the patients do not respond to therapy. No reliable biomarkers are available for prediction of IFX response. Our aims were to investigate the faecal bacterial and fungal communities during IFX therapy and find predictors for IFX treatment response in IBD patients. METHODS: A total of 72 IBD patients [25 CD and 47 UC] started IFX therapy and were followed for 1 year or until IFX treatment was discontinued. An amplicon sequencing approach, targeting the bacterial 16S rRNA gene and fungal ITS 1 region separately, was used to determine the microbiota profiles in faecal samples collected before IFX therapy and 2, 6, and 12 weeks and 1 year after initiation of therapy. The response to IFX was evaluated by colonoscopy and clinically at 12 weeks after initiation. RESULTS: Both faecal bacterial and fungal profiles differed significantly between response groups before start of IFX treatment. Non-responders had lower abundances of short chain fatty acid producers, particularly of the class Clostridia, and higher abundances of pro-inflammatory bacteria and fungi, such as the genus Candida, compared with responders. This was further indicated by bacterial taxa predicting the response in both CD and UC patients [area under the curve >0.8]. CONCLUSIONS: Faecal bacterial and fungal microbiota composition could provide a predictive tool to estimate IFX response in IBD patients.
Assuntos
Bactérias , Colite Ulcerativa , Doença de Crohn , Fezes/microbiologia , Fungos , Microbioma Gastrointestinal/efeitos dos fármacos , Infliximab/uso terapêutico , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Biomarcadores Farmacológicos/análise , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Colonoscopia/métodos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/microbiologia , Monitoramento de Medicamentos/métodos , Monitoramento de Medicamentos/estatística & dados numéricos , Feminino , Finlândia/epidemiologia , Fungos/classificação , Fungos/isolamento & purificação , Humanos , Masculino , Inibidores do Fator de Necrose Tumoral/uso terapêuticoRESUMO
High-density lipoproteins (HDLs) are a group of different subpopulations of sialylated particles that have an essential role in the reverse cholesterol transport (RCT) pathway. Importantly, changes in the protein and lipid composition of HDLs may lead to the formation of particles with reduced atheroprotective properties. Here, we show that Streptococcus pneumoniae pneumolysin (PLY) and neuraminidase A (NanA) impair HDL function by causing chemical and structural modifications of HDLs. The proteomic, lipidomic, cellular, and biochemical analysis revealed that PLY and NanA induce significant changes in sialic acid, protein, and lipid compositions of HDL. The modified HDL particles have reduced cholesterol acceptor potential from activated macrophages, elevated levels of malondialdehyde adducts, and show significantly increased complement activating capacity. These results suggest that accumulation of these modified HDL particles in the arterial intima may present a trigger for complement activation, inflammatory response, and thereby promote atherogenic disease progression.
RESUMO
The alternative pathway (AP) of complement is constantly active in plasma and can easily be activated on self surfaces and trigger local inflammation. Host cells are protected from AP attack by Factor H (FH), the main AP regulator in plasma. Although complement is known to play a role in atherosclerosis, the mechanisms of its contribution are not fully understood. Since FH via its domains 5-7 binds apoliporotein E (apoE) and macrophages produce apoE we examined how FH could be involved in the antiatherogenic effects of apoE. We used blood peripheral monocytes and THP-1 monocyte/macrophage cells which were also loaded with acetylated low-density lipoprotein (LDL) to form foam cells. Binding of FH and apoE on these cells was analyzed by flow cytometry. High-density lipoprotein (HDL)-mediated cholesterol efflux of activated THP-1 cells was measured and transcriptomes of THP-1 cells using mRNA sequencing were determined. We found that binding of FH to human blood monocytes and cholesterol-loaded THP-1 macrophages increased apoE binding to these cells. Preincubation of fluorescent cholesterol labeled THP-1 macrophages in the presence of FH increased cholesterol efflux and cholesterol-loaded macrophages displayed reduced transcription of proinflammatory/proatherogenic factors and increased transcription of anti-inflammatory/anti-atherogenic factors. Further incubation of THP-1 cells with serum reduced C3b/iC3b deposition. Overall, our data indicate that apoE and FH interact with monocytic cells in a concerted action and this interaction reduces complement activation and inflammation in the atherosclerotic lesions. By this way FH may participate in mediating the beneficial effects of apoE in suppressing atherosclerotic lesion progression.
Assuntos
Apolipoproteínas E/imunologia , Aterosclerose/imunologia , Fator H do Complemento/imunologia , Células Espumosas/imunologia , Monócitos/imunologia , Aterosclerose/patologia , Complemento C3b/imunologia , Células Espumosas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Lipoproteínas HDL/imunologia , Monócitos/patologia , Células THP-1 , Transcrição Gênica/imunologiaRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0176739.].
RESUMO
Lactobacillus rhamnosus strains are ubiquitous in fermented foods, and in the human body where they are commensals naturally present in the normal microbiota composition of gut, vagina and skin. However, in some cases, Lactobacillus spp. have been implicated in bacteremia. The aim of the study was to examine the genomic and immunological properties of 16 clinical blood isolates of L. rhamnosus and to compare them to the well-studied L. rhamnosus probiotic strain GG. Blood cultures from bacteremic patients were collected at the Helsinki University Hospital laboratory in 2005-2011 and L. rhamnosus strains were isolated and characterized by genomic sequencing. The capacity of the L. rhamnosus strains to activate serum complement was studied using immunological assays for complement factor C3a and the terminal pathway complement complex (TCC). Binding of complement regulators factor H and C4bp was also determined using radioligand assays. Furthermore, the isolated strains were evaluated for their ability to aggregate platelets and to form biofilms in vitro. Genomic comparison between the clinical L. rhamnosus strains showed them to be clearly different from L. rhamnosus GG and to cluster in two distinct lineages. All L. rhamnosus strains activated complement in serum and none of them bound complement regulators. Four out of 16 clinical blood isolates induced platelet aggregation and/or formed more biofilms than L. rhamnosus GG, which did not display platelet aggregation activity nor showed strong biofilm formation. These findings suggest that clinical L. rhamnosus isolates show considerable heterogeneity but are clearly different from L. rhamnosus GG at the genomic level. All L. rhamnosus strains are still normally recognized by the human complement system.
Assuntos
Proteínas do Sistema Complemento/metabolismo , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Análise por Conglomerados , Ativação do Complemento , Fímbrias Bacterianas/metabolismo , Genes Bacterianos , Genótipo , Humanos , Fenótipo , Plasmídeos/metabolismo , Agregação Plaquetária , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismoRESUMO
Inflammation is an important mediator of obesity-related complications such as the metabolic syndrome but its causes and mechanisms are unknown. As the complement system is a key mediator of inflammation, we studied whether it is activated in acquired obesity in subcutaneous adipose tissue (AT) and isolated adipocytes. We used a special study design of genetically matched controls of lean and heavy groups, rare monozygotic twin pairs discordant for body mass index (BMI) [n = 26, within-pair difference (Δ) in body mass index, BMI >3 kg/m2] with as much as 18 kg mean Δweight. Additionally, 14 BMI-concordant (BMI <3 kg/m2) served as a reference group. The detailed measurements included body composition (DEXA), fat distribution (MRI), glucose, insulin, adipokines, C3a and SC5b-9 levels, and the expression of complement and insulin signaling pathway-related genes in AT and adipocytes. In both AT and isolated adipocytes, the classical and alternative pathway genes were upregulated, and the terminal pathway genes downregulated in the heavier co-twins of the BMI-discordant pairs. The upregulated genes included C1q, C1s, C2, ficolin-1, factor H, receptors for C3a and C5a (C5aR1), and the iC3b receptor (CR3). While the terminal pathway components C5 and C6 were downregulated, its inhibitor clusterin was upregulated. Complement gene upregulation in AT and adipocytes correlated positively with adiposity and hyperinsulinemia and negatively with the expression of insulin signaling-related genes. Plasma C3a, but not SC5b-9, levels were elevated in the heavier co-twins. There were no differences between the co-twins in BMI-concordant pairs. Obesity is associated with increased expression of the early, but not late, complement pathway components and of key receptors. The twins with acquired obesity have therefore an inflated inflammatory activity in the AT. The results suggest that complement is likely involved in orchestrating clearance of apoptotic debris and inflammation in the AT.
RESUMO
OSBP-related protein 8 (ORP8) encoded by Osbpl8 is an endoplasmic reticulum sterol sensor implicated in cellular lipid metabolism. We generated an Osbpl8(-/-) (KO) C57Bl/6 mouse strain. Wild-type and Osbpl8KO animals at the age of 13-weeks were fed for 5 weeks either chow or high-fat diet, and their plasma lipids/lipoproteins and hepatic lipids were analyzed. The chow-fed Osbpl8KO male mice showed a marked elevation of high-density lipoprotein (HDL) cholesterol (+79%) and phospholipids (+35%), while only minor increase of apolipoprotein A-I (apoA-I) was detected. In chow-fed female KO mice a less prominent increase of HDL cholesterol (+27%) was observed, while on western diet the HDL increment was prominent in both genders. The HDL increase was accompanied by an elevated level of HDL-associated apolipoprotein E in male, but not female KO animals. No differences between genotypes were observed in lecithin:cholesterol acyltransferase (LCAT) or hepatic lipase (HL) activity, or in the fractional catabolic rate of fluorescently labeled mouse HDL injected in chow-diet fed animals. The Osbpl8KO mice of both genders displayed reduced phospholipid transfer protein (PLTP) activity, but only on chow diet. These findings are consistent with a model in which Osbpl8 deficiency results in altered biosynthesis of HDL. Consistent with this hypothesis, ORP8 depleted mouse hepatocytes secreted an increased amount of nascent HDL into the culture medium. In addition to the HDL phenotype, distinct gender-specific alterations in lipid metabolism were detected: Female KO animals on chow diet showed reduced lipoprotein lipase (LPL) activity and increased plasma triglycerides, while the male KO mice displayed elevated plasma cholesterol biosynthetic markers cholestenol, desmosterol, and lathosterol. Moreover, modest gender-specific alterations in the hepatic expression of lipid homeostatic genes were observed. In conclusion, we report the first viable OsbplKO mouse model, demonstrating a HDL elevating effect of Osbpl8 knock-out and additional gender- and/or diet-dependent impacts on lipid metabolism.
Assuntos
Metabolismo dos Lipídeos , Lipoproteínas HDL/sangue , Receptores de Esteroides/deficiência , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Apolipoproteínas/sangue , Apolipoproteínas E/metabolismo , Peso Corporal , Colesterol/metabolismo , Feminino , Expressão Gênica , Ordem dos Genes , Marcação de Genes , Hepatócitos/metabolismo , Rim/metabolismo , Metabolismo dos Lipídeos/genética , Lipase Lipoproteica/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Proteínas de Transferência de Fosfolipídeos/sangue , RNA Mensageiro , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Fatores SexuaisRESUMO
Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer's disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.