Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
J Transl Med ; 22(1): 843, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272101

RESUMO

BACKGROUND: Multiple Sclerosis (MS) is an autoimmune disease associated with physical disability, psychological impairment, and cognitive dysfunctions. Consequently, the disease burden is substantial, and treatment choices are limited. In this randomized, double-blind study, we conducted repeated prefrontal electrical stimulation in 40 patients with MS to evaluate mental health variables (quality of life, sleep difficulties, psychological distress) and cognitive dysfunctions (psychomotor speed, working memory, attention/vigilance), marking it as the third largest sample size tDCS research conducted in MS to date. METHODS: The patients were randomly assigned (block randomization method) to two groups of sham (n = 20), or 1.5-mA (n = 20) transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (F3) and right frontopolar cortex (Fp2) with anodal and cathodal stimulation respectively (electrode size: 25 cm2). The treatment included 10 sessions of 20 min of stimulation delivered every other day. Outcome measures were MS quality of life, sleep quality, psychological distress, and performance on a neuropsychological test battery dedicated to cognitive dysfunctions in MS (psychomotor speed, working memory, and attention). All outcome measures were evaluated at the pre-intervention and post-intervention assessments. Both patients and technicians delivering the stimulation were unaware of the type of stimulation being used. RESULTS: Repeated prefrontal real tDCS significantly improved quality of life and reduced sleep difficulties and psychological distress compared to the sham group. It, furthermore, improved psychomotor speed, attention, and vigilance compared to the sham protocol. Improvement in mental health outcome variables and cognitive outperformance were interrelated and could predict each other. CONCLUSIONS: Repeated prefrontal and frontopolar tDCS ameliorates secondary clinical symptoms related to mental health and results in beneficial cognitive effects in patients with MS. These results support applying prefrontal tDCS in larger trials for improving mental health and cognitive dysfunctions in MS. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT06401928.


Assuntos
Saúde Mental , Esclerose Múltipla , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Método Duplo-Cego , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Esclerose Múltipla/psicologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Qualidade de Vida , Testes Neuropsicológicos , Transtornos Cognitivos/terapia
2.
Neuropsychol Rev ; 34(1): 338-361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36877327

RESUMO

Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.


Assuntos
Disfunção Cognitiva , Demência , Estimulação Transcraniana por Corrente Contínua , Humanos , Cognição , Disfunção Cognitiva/terapia , Demência/terapia , Memória , Estimulação Transcraniana por Corrente Contínua/métodos
3.
Psychophysiology ; : e14653, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014532

RESUMO

Research suggests a potential of gamma oscillation entrainment for enhancing memory in Alzheimer's disease and healthy subjects. Gamma entrainment can be accomplished with oscillatory electrical, but also sensory stimulation. However, comparative studies between sensory stimulation and transcranial alternating current stimulation (tACS) effects on memory processes are lacking. This study examined the effects of rhythmic gamma auditory stimulation (rAS) and temporal gamma-tACS on verbal long-term memory (LTM) and working memory (WM) in 74 healthy individuals. Participants were assigned to two groups according to the stimulation techniques (rAS or tACS). Memory was assessed in three experimental blocks, in which each participant was administered with control, 40, and 60 Hz stimulation in counterbalanced order. All interventions were well-tolerated, and participants reported mostly comparable side effects between real stimulation (40 and 60 Hz) and the control condition. LTM immediate and delayed recall remained unaffected by stimulations, while immediate recall intrusions decreased during 60 Hz stimulation. Notably, 40 Hz interventions improved WM compared to control stimulations. These results highlight the potential of 60 and 40 Hz temporal cortex stimulation for reducing immediate LTM recall intrusions and improving WM performance, respectively, probably due to the entrainment of specific gamma oscillations in the auditory cortex. The results also shed light on the comparative effects of these neuromodulation tools on memory functions, and their potential applications for cognitive enhancement and in clinical trials.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38727819

RESUMO

Previous studies have shown that aerobic exercise has beneficial effects on executive function in adolescents with attention-deficit hyperactivity disorder (ADHD). The underlying mechanisms could be partially due to aerobic exercise-induced cortical excitability modulation. The aim of this study was to explore the effects of acute aerobic exercise on executive functions and cortical excitability and the association between these phenomena in adolescents with ADHD. The study was conducted using a complete crossover design. Executive functions (inhibitory control, working memory, and planning) and cortical excitability were assessed in twenty-four drug-naïve adolescents with ADHD before and after acute aerobic exercise or a control intervention. Inhibitory control, working memory, and planning improved after acute aerobic exercise in adolescents with ADHD. Moreover, cortical excitability monitored by transcranial magnetic stimulation (TMS) decreased after intervention in this population. Additionally, improvements in inhibitory control and working memory performance were associated with enhanced cortical inhibition. The findings provide indirect preliminary evidence for the assumption that changes in cortical excitability induced by aerobic exercise partially contribute to improvements in executive function in adolescents with ADHD.

5.
Virtual Real ; 28(2): 95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39233779

RESUMO

Mixed reality technologies, such as virtual (VR) and augmented (AR) reality, present promising opportunities to advance education and professional training due to their adaptability to diverse contexts. Distortions in the perceived distance in such mediated conditions, however, are well documented and have imposed nontrivial challenges that complicate and limit transferring task performance in a virtual setting to the unmediated reality (UR). One potential source of the distance distortion is the vergence-accommodation conflict-the discrepancy between the depth specified by the eyes' accommodative state and the angle at which the eyes converge to fixate on a target. The present study involved the use of a manual pointing task in UR, VR, and AR to quantify the magnitude of the potential depth distortion in each modality. Conceptualizing the effect of vergence-accommodation offset as a constant offset to the vergence angle, a model was developed based on the stereoscopic viewing geometry. Different versions of the model were used to fit and predict the behavioral data for all modalities. Results confirmed the validity of the conceptualization of vergence-accommodation as a device-specific vergence offset, which predicted up to 66% of the variance in the data. The fitted parameters indicate that, due to the vergence-accommodation conflict, participants' vergence angle was driven outwards by approximately 0.2°, which disrupted the stereoscopic viewing geometry and produced distance distortion in VR and AR. The implications of this finding are discussed in the context of developing virtual environments that minimize the effect of depth distortion.

6.
Brain Topogr ; 36(4): 535-544, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202646

RESUMO

BACKGROUND AND AIMS: Mind wandering refers to spontaneously occurring, often disruptive thoughts during an ongoing task or resting state. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are two main cortical areas which are involved in this process. This study aimed to explore the interaction of these areas during mind wandering by enhancing specific oscillatory activity of these areas via transcranial alternating current stimulation (tACS) in the theta frequency range. MATERIAL AND METHODS: Eighteen healthy adults participated in a randomized, single-blinded, crossover study. tACS (1.5 mA, 6 Hz) was applied in five sessions with one week interval via (1) two channels with synchronized stimulation over the left dlPFC and right vmPFC, (2) the same electrode placement with anti-phase stimulation, (3) stimulation over the left dlPFC only, (4) stimulation over right vmPFC only, and (5) sham stimulation. The return electrodes were placed over the contralateral shoulder in all conditions. The sustained attention to response task (SART) with embedded probes about task-unrelated-thoughts and awareness of these thoughts was performed during intervention. RESULTS: Stimulation did not alter SART performance. Right vmPFC stimulation decreased mind wandering and increased awareness of mind wandering. Left dlPFC stimulation and desynchronized stimulation over the dlPFC and vmPFC increased mind wandering compared to the sham stimulation condition. Synchronized stimulation had no effect on mind wandering, but increased awareness of mind wandering. CONCLUSION: The results suggest that regional entrainment of the vmPFC decreases mind wandering and increases awareness of mind wandering, whereas regional entrainment of the dlPFC increases mind wandering, but decreases awareness. Under desynchronized stimulation of both areas, the propensity of mind wandering was increased, whereas synchronized stimulation increased the awareness of mind wandering. These results suggest a role of the dlPFC in initiation of mind wandering, whereas the vmPFC downregulates mind wandering, and might exert this function by counteracting respective dlPFC effects via theta oscillations.


Assuntos
Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Estudos Cross-Over , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Cognição
7.
Cereb Cortex ; 32(23): 5478-5488, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35165699

RESUMO

Dopamine is a key neuromodulator of neuroplasticity and an important neuronal substrate of learning, and memory formation, which critically involves glutamatergic N-methyl-D-aspartate (NMDA) receptors. Dopamine modulates NMDA receptor activity via dopamine D1 and D2 receptor subtypes. It is hypothesized that dopamine focuses on long-term potentiation (LTP)-like plasticity, i.e. reduces diffuse widespread but enhances locally restricted plasticity via a D2 receptor-dependent NMDA receptor activity reduction. Here, we explored NMDA receptor-dependent mechanisms underlying dopaminergic modulation of LTP-like plasticity induced by transcranial direct current stimulation (tDCS). Eleven healthy, right-handed volunteers received anodal tDCS (1 mA, 13 min) over the left motor cortex combined with dopaminergic agents (the D2 receptor agonist bromocriptine, levodopa for general dopamine enhancement, or placebo) and the partial NMDA receptor agonist D-cycloserine (dosages of 50, 100, and 200 mg, or placebo). Cortical excitability was monitored by transcranial magnetic stimulation-induced motor-evoked potentials. We found that LTP-like plasticity was abolished or converted into LTD-like plasticity via dopaminergic activation, but reestablished under medium-dose D-cycloserine. These results suggest that diffuse LTP-like plasticity is counteracted upon via D2 receptor-dependent reduction of NMDA receptor activity.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Receptores de N-Metil-D-Aspartato , Dopamina/farmacologia , Ciclosserina/farmacologia , Potencial Evocado Motor/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Dopamina D2/metabolismo
8.
Exp Brain Res ; 240(6): 1743-1755, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35389072

RESUMO

Earlier research suggested that after 210 practice trials, the supplementary motor area (SMA) is involved in executing all responses of familiar 6-key sequences in a discrete sequence production (DSP) task (Verwey, Lammens, and van Honk, 2002). This was indicated by slowing of each response 20 and 25 min after the SMA had been stimulated for 20 min using repetitive transcranial magnetic stimulation (rTMS). The present study used a similar approach to assess the effects of TMS to the more posterior SMAproper at the end of practice and also 24 h later. As expected stimulation of SMAproper with 20 min of 1 Hz rTMS and 40 s of continuous theta burst stimulation (cTBS) immediately after practice slowed sequence execution relative to a sham TMS condition, but stimulation on the day following practice did not cause slowing. This indicates that offline consolidation makes learning robust against stimulation of SMAproper. Execution of all responses in the sequence was disrupted 0, 20, and 40 min after rTMS, but after cTBS, this occurred only after 40 min. The results suggest that it is implicit sequence knowledge that is processed by the SMAproper and that consolidates.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Potencial Evocado Motor , Humanos , Aprendizagem , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos
9.
Neurocase ; 28(2): 218-225, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35533270

RESUMO

The purpose of this single subject study was to investigate whether transcranial direct current stimulation (tDCS) applied to both hemispheres combined with speech therapy can improve language learning in a pair of 5-year-old twins with corpus callosum dysgenesis (CCD). The treatment protocol included anodal tDCS with simultaneous speech therapy in one of the participants (T.D.), and sham-tDCS with the same montage, and stimulation regime concomitant with speech therapy for the other twin (A.D.). Our findings show that T.D. improved in language production when treated with speech therapy in combination with tDCS. A.D. showed evidence for a relatively minor behavioral benefit from speech therapy.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Agenesia do Corpo Caloso , Pré-Escolar , Humanos , Idioma , Fonoterapia , Estimulação Transcraniana por Corrente Contínua/métodos , Gêmeos Monozigóticos
10.
HNO ; 70(9): 691-695, 2022 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-35579675

RESUMO

We report the case of an 11-year-old girl with difficultly speaking and a history of singular, self-limiting oral bleeding. Clinical and radiological examination in the emergency room showed a vascularized tumor of the base of the tongue, which almost completely occluded the oropharynx. After complex anesthesiologic preparation and endoluminal embolization, the tumor was safely removed by transoral laser microsurgery. Histology revealed a rare benign schwannoma of the oropharynx. Further clinical examinations and genetic screening were recommended.


Assuntos
Neurilemoma , Neoplasias da Língua , Criança , Feminino , Humanos , Pescoço , Neurilemoma/cirurgia , Faringe/patologia , Língua , Neoplasias da Língua/diagnóstico , Neoplasias da Língua/patologia , Neoplasias da Língua/cirurgia
11.
Neuroimage ; 245: 118772, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34861393

RESUMO

Network-level synchronization of theta oscillations in the cerebral cortex is linked to many vital cognitive functions across daily life, such as executive functions or regulation of arousal and consciousness. However, while neuroimaging has uncovered the ubiquitous functional relevance of theta rhythms in cognition, there remains a limited set of techniques for externally enhancing and stabilizing theta in the human brain non-invasively. Here, we developed and employed a new phase-synchronized low-intensity electric and magnetic stimulation technique to induce and stabilize narrowband 6-Hz theta oscillations in a group of healthy human adult participants, and then demonstrated how this technique also enhances cognitive processing by assaying working memory. Our findings demonstrate a technological advancement of brain stimulation methods, while also validating the causal link between theta activity and concurrent cognitive behavior, which may ultimately help to not only explain mechanisms, but offer perspectives for restoring deficient theta-band network activity observed in neuropsychiatric diseases.


Assuntos
Conectoma , Sincronização Cortical/fisiologia , Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Ritmo Teta/fisiologia , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
12.
Neurobiol Learn Mem ; 177: 107356, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278591

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) has previously been shown to improve fear extinction learning and retention when administered prior to or during extinction learning. This study investigates whether tDCS immediately following extinction learning improves efficacy of extinction memory retention. METHODS: 30 participants completed a 2-day fear learning and extinction paradigm, where they acquired fear of a stimulus conditioned to an aversive electric shock on day 1. Extinction learning occurred on day 1, with tDCS or sham tDCS administered immediately following the learning phase. Participants returned for a second day test of extinction memory recall. Skin conductance was measured as the primary outcome. RESULTS/CONCLUSIONS: Participants in the tDCS group showed impaired fear extinction retention on day 2, marked by significant generalisation of fear to the safety stimulus. This contrasts with earlier studies showing improved extinction retention when stimulation occurred during encoding of extinction learning, compared to immediate consolidation as in our study. These findings may have important implications for the use of tDCS during exposure therapy for anxiety and trauma disorders.


Assuntos
Extinção Psicológica , Medo/fisiologia , Retenção Psicológica , Estimulação Transcraniana por Corrente Contínua , Adulto , Extinção Psicológica/fisiologia , Medo/psicologia , Feminino , Resposta Galvânica da Pele , Humanos , Masculino , Retenção Psicológica/fisiologia , Fatores de Tempo , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem
13.
Int J Neuropsychopharmacol ; 24(10): 787-797, 2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34106250

RESUMO

BACKGROUND: The serotonergic system has an important impact on basic physiological and higher brain functions. Acute and chronic enhancement of serotonin levels via selective serotonin reuptake inhibitor administration impacts neuroplasticity in humans, as shown by its effects on cortical excitability alterations induced by non-invasive brain stimulation, including transcranial direct current stimulation (tDCS). Nevertheless, the interaction between serotonin activation and neuroplasticity is not fully understood, particularly considering dose-dependent effects. Our goal was to explore dosage-dependent effects of acute serotonin enhancement on stimulation-induced plasticity in healthy individuals. METHODS: Twelve healthy adults participated in 7 sessions conducted in a crossover, partially double-blinded, randomized, and sham-controlled study design. Anodal and cathodal tDCS was applied to the motor cortex under selective serotonin reuptake inhibitor (20 mg/40 mg citalopram) or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation. RESULTS: Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for approximately 60-120 minutes after the intervention. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS regardless of the dosage while turning cathodal tDCS-induced excitability diminution into facilitation. For the latter, prolonged effects were observed when 40 mg was administrated. CONCLUSIONS: Acute serotonin enhancement modulates tDCS after-effects and has largely similar modulatory effects on motor cortex neuroplasticity regardless of the specific dosage. A minor dosage-dependent effect was observed only for cathodal tDCS. The present findings support the concept of boosting the neuroplastic effects of anodal tDCS by serotonergic enhancement, a potential clinical approach for the treatment of neurological and psychiatric disorders.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Citalopram/farmacologia , Excitabilidade Cortical/efeitos dos fármacos , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Córtex Motor/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Distribuição Aleatória , Adulto Jovem
14.
Int J Neuropsychopharmacol ; 24(6): 490-498, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33617635

RESUMO

BACKGROUND: Noradrenaline has an important role as a neuromodulator of the central nervous system. Noradrenergic enhancement was recently shown to enhance glutamate-dependent cortical facilitation and long term potentiation-like plasticity. As cortical excitability and plasticity are closely linked to various cognitive processes, here we aimed to explore whether these alterations are associated with respective cognitive performance changes. Specifically, we assessed the impact of noradrenergic enhancement on motor learning (serial reaction time task), attentional processes (Stroop interference task), and working memory performance (n-back letter task). METHODS: The study was conducted in a cross-over design. Twenty-five healthy humans performed the respective cognitive tasks after a single dose of the noradrenaline reuptake inhibitor reboxetine or placebo administration. RESULTS: The results show that motor learning, attentional processes, and working memory performance in healthy participants were improved by reboxetine application compared with placebo. CONCLUSIONS: The results of the present study thus suggest that noradrenergic enhancement can improve memory formation and executive functions in healthy humans. The respective changes are in line with related effects of noradrenaline on cortical excitability and plasticity.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Atenção/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nootrópicos/farmacologia , Norepinefrina , Reboxetina/farmacologia , Inibidores da Captação Adrenérgica/administração & dosagem , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , Nootrópicos/administração & dosagem , Reboxetina/administração & dosagem , Adulto Jovem
15.
Mol Psychiatry ; 25(4): 896-905, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692610

RESUMO

Schizophrenia is a severe neurodevelopmental psychiatric affliction manifested behaviorally at late adolescence/early adulthood. Current treatments comprise antipsychotics which act solely symptomatic, are limited in their effectiveness and often associated with side-effects. We here report that application of non-invasive transcranial direct current stimulation (tDCS) during adolescence, prior to schizophrenia-relevant behavioral manifestation, prevents the development of positive symptoms and related neurobiological alterations in the maternal immune stimulation (MIS) model of schizophrenia.


Assuntos
Lobo Frontal/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/terapia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Estimulação Transcraniana por Corrente Contínua/métodos
16.
Cereb Cortex ; 30(10): 5346-5355, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32483622

RESUMO

Dopamine plays an important role in the modulation of neuroplasticity, which serves as the physiological basis of cognition. The physiological effects of dopamine depend on receptor subtypes, and the D1 receptor is critically involved in learning and memory formation. Evidence from both animal and human studies shows a dose-dependent impact of D1 activity on performance. However, the direct association between physiology and behavior in humans remains unclear. In this study, four groups of healthy participants were recruited, and each group received placebo or medication inducing a low, medium, or high amount of D1 activation via the combination of levodopa and a D2 antagonist. After medication, fMRI was conducted during a visuomotor learning task. The behavioral results revealed an inverted U-shaped effect of D1 activation on task performance, where medium-dose D1 activation led to superior learning effects, as compared to placebo as well as low- and high-dose groups. A respective dose-dependent D1 modulation was also observed for cortical activity revealed by fMRI. Further analysis demonstrated a positive correlation between task performance and cortical activation at the left primary motor cortex. Our results indicate a nonlinear curve of D1 modulation on motor learning in humans and the respective physiological correlates in corresponding brain areas.


Assuntos
Encéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Receptores de Dopamina D1/fisiologia , Adulto , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Dopaminérgicos/administração & dosagem , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Levodopa/administração & dosagem , Imageamento por Ressonância Magnética , Masculino , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Dopamina D1/agonistas , Adulto Jovem
17.
Arch Toxicol ; 95(7): 2571-2587, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34095968

RESUMO

Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.


Assuntos
Água Potável , Fluoretos , Animais , Estudos Epidemiológicos , Europa (Continente) , Fluoretos/toxicidade , Estudos Longitudinais
18.
J Integr Neurosci ; 20(2): 367-374, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34258935

RESUMO

Transcranial direct stimulation, a non-invasive neurostimulation technique for modulating cortical excitability, and yoga have both respectively been shown to positively affect cognition. While preliminary research has shown that combined transcranial direct stimulation and meditation may have synergistic effects on mood and cognition, this was the first study to explore the combination of transcranial direct stimulation and yoga. Twenty-two healthy volunteers with a regular yoga practice were randomized to receive either active transcranial direct stimulation (anodal left, cathodal right dorsolateral prefrontal cortex) followed by yoga intervention or sham transcranial direct stimulation followed by yoga intervention a double-blind, cross-over design over two separate intervention days. Outcome measures included working memory performance, measured with the n-back task and mindfulness state, measured with the Toronto Mindfulness Scale, and were conducted offline, with pre-post assessments. Twenty participants completed both days of the intervention. Active transcranial direct stimulation did not have a significant effect on working memory or levels of mindfulness. There was a significant placebo effect, with better performance on day 1 of the intervention, irrespective of whether participants received active or sham transcranial direct stimulation. There was no significant difference between active versus sham transcranial direct stimulation concerning working memory performance and mindfulness, which may be accounted by the small sample size, the transient nature of the intervention, the fact that yoga and transcranial direct stimulation concerning were not conducted simultaneously, and the specific site of stimulation.


Assuntos
Memória de Curto Prazo/fisiologia , Atenção Plena , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Yoga , Adulto , Terapia Combinada , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde , Adulto Jovem
19.
Neuromodulation ; 24(5): 910-915, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394544

RESUMO

OBJECTIVES: A proposed replay of memory traces between the hippocampus and frontal cortical brain areas during sleep is of high relevance for overnight memory consolidation. Recently, we demonstrated that bi-frontal anodal transcranial direct current stimulation (tDCS) prior to sleep increases waking EEG gamma power and decreases total sleep time during the night. It is unclear whether this effect on cortical excitability has an influence on overnight memory consolidation. We hypothesized that bi-frontal evening tDCS interferes with overnight memory consolidation with a polarity specific impairment following anodal tDCS. MATERIALS AND METHODS: Nineteen healthy participants underwent a within-subject, repeated-measures protocol in the sleep laboratory with bi-frontal tDCS applied prior to sleep according to the experimental protocol (anodal, cathodal, sham stimulation). Memory tasks for declarative and procedural memory were assessed prior to tDCS and on the following morning. RESULTS: No deterioration of overnight memory consolidation following evening offline bi-frontal tDCS could be detected. CONCLUSION(S): The application of tDCS can be considered safe regarding overnight memory consolidation and represents a promising treatment approach in conditions of decreased vigilance and arousal.


Assuntos
Consolidação da Memória , Estimulação Transcraniana por Corrente Contínua , Humanos , Memória , Polissonografia , Sono
20.
J Physiol ; 598(4): 805-816, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31714998

RESUMO

KEY POINTS: To explore the capability of cathodal transcranial direct current stimulation (tDCS) to induce late-phase long-term depression (LTD) via repeated stimulation. Conventional (1 mA for 15 min) and intensified (3 mA for 20 min) protocols with short (20 min) and long (24 h) intervals were tested. Late-phase plasticity was not induced by a single repetition of stimulation. Repetition reduced the efficacy of stimulation protocols with higher intensities. ABSTRACT: Transcranial direct current stimulation (tDCS) has shown promising results in pilot studies as a therapeutic intervention in disorders of the central nervous system, but more sustained effects are required for clinical application. To address this issue, one possible solution is the use of repeated stimulation protocols. Previous studies indicated the possibility of extending the after-effects of single intervention cathodal tDCS by repeating the tDCS, with relatively short intervals between repetitions being most effective. In this study, we thus investigated the effects of repeated stimulation protocols at short and long intervals, for a conventional tDCS protocol (1 mA for 15 min) and a newly developed optimized protocol (3 mA for 20 min). In 16 healthy participants, we compared single interventions of conventional and optimized protocols, repeated application of these protocols at intervals of 20 min and 24 h, and a sham tDCS session. tDCS-induced neuroplastic after-effects were then monitored with transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) until the following evening after stimulation. The results revealed that the duration of the after-effects of repeated conventional and optimized protocols with short intervals remained nearly unchanged compared to the respective single intervention protocols. For the long-interval (24 h) protocol, stimulation with the conventional protocol did not significantly alter respective after-effects, while it reduced the efficacy of the optimized protocol, compared with respective single interventions. Thus late-phase plasticity could not be induced by a single repetition of stimulation in this study, but repetition reduced the efficacy of stimulation protocols with higher intensities. This study provides further insights into the dependency of tDCS-induced neuroplasticity on stimulation parameters, and therefore delivers crucial information for future tDCS applications.


Assuntos
Potencial Evocado Motor , Córtex Motor , Plasticidade Neuronal , Estimulação Transcraniana por Corrente Contínua , Humanos , Fatores de Tempo , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA