Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Neurosci ; 43(23): 4217-4233, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37160369

RESUMO

Learning and behavior activate cue-specific patterns of sparsely distributed cells and synapses called ensembles that undergo memory-encoding engram alterations. While Fos is often used to label selectively activated cell bodies and identify neuronal ensembles, there is no comparable endogenous marker to label activated synapses and identify synaptic ensembles. For the purpose of identifying candidate synaptic activity markers, we optimized a flow cytometry of synaptoneurosome (FCS) procedure for assessing protein alterations in activated synapses from male and female rats. After injecting yellow fluorescent protein (YFP)-expressing adeno-associated virus into medial prefrontal cortex (mPFC) to label terminals in nucleus accumbens (NAc) of rats, we injected 20 mg/kg cocaine in a novel context (cocaine+novelty) to activate synapses, and prepared NAc synaptoneurosomes 0-60 min following injections. For FCS, we used commercially available antibodies to label presynaptic and postsynaptic markers synaptophysin and PSD-95 as well as candidate markers of synaptic activity [activity-regulated cytoskeleton protein (Arc), CaMKII and phospho-CaMKII, ribosomal protein S6 (S6) and phospho-S6, and calcineurin and phospho-calcineurin] in YFP-labeled synaptoneurosomes. Cocaine+novelty increased the percentage of S6-positive synaptoneurosomes at 5-60 min and calcineurin-positive synaptoneurosomes at 5-10 min. Electron microscopy verified that S6 and calcineurin levels in synaptoneurosomes were increased 10 min after cocaine+novelty. Pretreatment with the anesthetic chloral hydrate blocked cocaine+novelty-induced S6 and calcineurin increases in synaptoneurosomes, and novel context exposure alone (without cocaine) increased S6, both of which indicate that these increases were due to neural activity per se. Overall, FCS can be used to study protein alterations in activated synapses coming from specifically labeled mPFC projections to NAc.SIGNIFICANCE STATEMENT Memories are formed during learning and are stored in the brain by long-lasting molecular and cellular alterations called engrams formed within specific patterns of cue-activated neurons called neuronal ensembles. While Fos has been used to identify activated ensemble neurons and the engrams within them, we have not had a similar marker for activated synapses that can be used to identify synaptic engrams. Here we developed a procedure for high-throughput in-line analysis of flow cytometry of synaptoneurosome (FCS) and found that ribosomal S6 protein and calcineurin were increased in activated mPFC-NAc synapses. FCS can be used to study protein alterations in activated synapses within specifically labeled circuits.


Assuntos
Calcineurina , Cocaína , Feminino , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Núcleo Accumbens/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Citometria de Fluxo , Sinapses , Córtex Pré-Frontal/fisiologia , Cocaína/farmacologia
2.
Cell Commun Signal ; 21(1): 35, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782237

RESUMO

BACKGROUND: Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, exhibit great potential for the diagnosis and treatment of brain disorders, representing a valuable tool for precision medicine. The latter demands high-quality human biospecimens, especially in complex disorders in which pathological and specimen heterogeneity, as well as diverse individual clinical profile, often complicate the development of precision therapeutic schemes and patient-tailored treatments. Thus, the collection and characterization of physiologically relevant sEVs are of the utmost importance. However, standard brain EV isolation approaches rely on tissue dissociation, which can contaminate EV fractions with intracellular vesicles. METHODS: Based on multiscale analytical platforms such as cryo-EM, label-free proteomics, advanced flow cytometry, and ExoView analyses, we compared and characterized the EV fraction isolated with this novel method with a classical digestion-based EV isolation procedure. Moreover, EV biogenesis was pharmacologically manipulated with either GW4869 or picrotoxin to assess the validity of the spontaneous-release method, while the injection of labelled-EVs into the mouse brain further supported the integrity of the isolated vesicles. RESULTS: We hereby present an efficient purification method that captures a sEV-enriched population spontaneously released by mouse and human brain tissue. In addition, we tested the significance of the release method under conditions where biogenesis/secretion of sEVs was pharmacologically manipulated, as well as under animals' exposure to chronic stress, a clinically relevant precipitant of brain pathologies, such as depression and Alzheimer's disease. Our findings show that the released method monitors the drug-evoked inhibition or enhancement of sEVs secretion while chronic stress induces the secretion of brain exosomes accompanied by memory loss and mood deficits suggesting a potential role of sEVs in the brain response to stress and related stress-driven brain pathology. CONCLUSIONS: Overall, the spontaneous release method of sEV yield may contribute to the characterization and biomarker profile of physiologically relevant brain-derived sEVs in brain function and pathology. Video Abstract.


Assuntos
Doença de Alzheimer , Exossomos , Vesículas Extracelulares , Humanos , Animais , Camundongos , Encéfalo , Biomarcadores
3.
Mol Psychiatry ; 26(7): 3395-3406, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33658605

RESUMO

We identified biologically relevant moderators of response to tumor necrosis factor (TNF)-α inhibitor, infliximab, among 60 individuals with bipolar depression. Data were derived from a 12-week, randomized, placebo-controlled clinical trial secondarily evaluating the efficacy of infliximab on a measure of anhedonia (i.e., Snaith-Hamilton Pleasure Scale). Three inflammatory biotypes were derived from peripheral cytokine measurements using an iterative, machine learning-based approach. Infliximab-randomized participants classified as biotype 3 exhibited lower baseline concentrations of pro- and anti-inflammatory cytokines and soluble TNF receptor-1 and reported greater pro-hedonic improvements, relative to those classified as biotype 1 or 2. Pretreatment biotypes also moderated changes in neuroinflammatory substrates relevant to infliximab's hypothesized mechanism of action. Neuronal origin-enriched extracellular vesicle (NEV) protein concentrations were reduced to two factors using principal axis factoring: phosphorylated nuclear factorκB (p-NFκB), Fas-associated death domain (p-FADD), and IκB kinase (p-IKKα/ß) and TNF receptor-1 (TNFR1) comprised factor "NEV1," whereas phosphorylated insulin receptor substrate-1 (p-IRS1), p38 mitogen-activated protein kinase (p-p38), and c-Jun N-terminal kinase (p-JNK) constituted "NEV2". Among infliximab-randomized subjects classified as biotype 3, NEV1 scores were decreased at weeks 2 and 6 and increased at week 12, relative to baseline, and NEV2 scores increased over time. Decreases in NEV1 scores and increases in NEV2 scores were associated with greater reductions in anhedonic symptoms in our classification and regression tree model (r2 = 0.22, RMSE = 0.08). Our findings provide preliminary evidence supporting the hypothesis that the pro-hedonic effects of infliximab require modulation of multiple TNF-α signaling pathways, including NF-κB, IRS1, and MAPK.


Assuntos
Transtorno Bipolar , Infliximab/uso terapêutico , Biomarcadores , Transtorno Bipolar/tratamento farmacológico , Humanos , Proteínas Substratos do Receptor de Insulina , Sistema de Sinalização das MAP Quinases , NF-kappa B , Fator de Necrose Tumoral alfa
4.
Mult Scler ; 27(4): 509-518, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32669030

RESUMO

BACKGROUND: Synaptic loss is a feature of multiple sclerosis pathology that can be seen even in normal-appearing gray matter. Opsonization of synapses with complement components may underlie pathologic synapse loss. OBJECTIVE: We sought to determine whether circulating neuronal-enriched and astrocytic-enriched extracellular vesicles (NEVs and AEVs) provide biomarkers reflecting complement-mediated synaptic loss in multiple sclerosis. METHODS: From plasma of 61 people with multiple sclerosis (46 relapsing-remitting multiple sclerosis (RRMS) and 15 progressive MS) and 31 healthy controls, we immunocaptured L1CAM + NEVs and GLAST + AEVs. We measured pre- and post-synaptic proteins synaptopodin and synaptophysin in NEVs and complement components (C1q, C3, C3b/iC3b, C4, C5, C5a, C9, Factor B, and Factor H) in AEVs, total circulating EVs, and neat plasma. RESULTS: We found lower levels of NEV synaptopodin and synaptophysin in MS compared to controls (p < 0.0001 for both). In AEVs, we found higher levels of multiple complement cascade components in people with MS compared to controls; these differences were not noted in total EVs or neat plasma. Strikingly, there were strong inverse correlations between NEV synaptic proteins and multiple AEV complement components in MS, but not in controls. CONCLUSION: Circulating EVs could identify synaptic loss in MS and suggest a link between astrocytic complement production and synaptic loss.


Assuntos
Vesículas Extracelulares , Esclerose Múltipla , Biomarcadores , Ativação do Complemento , Proteínas do Sistema Complemento , Humanos
5.
FASEB J ; 33(1): 231-238, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29924942

RESUMO

Exosomes derived from chondroitin sulfate proteoglycan (CSPG) 4 type neural precursor cells (CSPG4Es) were purified from human plasma by sequential immunoabsorption with anti-CSPG4 and anti-platelet growth factor receptor α mAb to characterize the potential in vivo roles of CSPG4 cells in neuronal repair. Hepatocyte growth factor, fibroblast growth factors (FGFs)-2 and -13, and type 1 insulin-like growth factor (IGF-1), which enhance neuronal survival and functions, were quantified in CSPG4E extracts. For CSPG4Es of 24 healthy control subjects, mean levels of hepatocyte growth factor, FGF-13, and IGF-1, but not FGF-2, were significantly higher by up to 7-fold than in their neuronal-derived exosomes, and mean levels of all 4 growth factors were significantly higher by up to 8-fold than in their astrocyte-derived exosomes. Mean CSPG4E levels of all growth factors were significantly lower in patients with mild Alzheimer disease (AD) ( n = 24) than in age- and sex-matched cognitively normal control subjects ( n = 24). Mean CSPG4E levels of all growth factors were also significantly lower in 15 patients at the stage of moderate dementia from AD (AD2) and at their preclinical stage 3 to 8 yr earlier (AD1), with no differences between values at stages AD1 and AD2. Current findings suggest that CSPG4 cells export in exosomes higher levels of neurotrophic factors than neurons or astrocytes and that CSPG4E neurotrophic factors are diminished early in AD, with no significant progression of decreases later in the course.-Goetzl, E. J., Nogueras-Ortiz, C., Mustapic, M., Mullins, R. J., Abner, E. L., Schwartz, J. B., Kapogiannis, D. Deficient neurotrophic factors of CSPG4-type neural cell exosomes in Alzheimer disease.


Assuntos
Doença de Alzheimer/diagnóstico , Biomarcadores/análise , Proteoglicanas de Sulfatos de Condroitina/sangue , Proteoglicanas de Sulfatos de Condroitina/líquido cefalorraquidiano , Exossomos/metabolismo , Proteínas de Membrana/sangue , Proteínas de Membrana/líquido cefalorraquidiano , Fatores de Crescimento Neural/sangue , Fatores de Crescimento Neural/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Estudos Retrospectivos
6.
Mol Pharmacol ; 90(5): 620-626, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27338082

RESUMO

The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system, with key roles during neurotransmitter release and synaptic plasticity. Upon ligand activation, CB1Rs may signal in three different spatiotemporal waves. The first wave, which is transient (<10 minutes) and initiated by heterotrimeric G proteins, is followed by a second wave (>5 minutes) that is mediated by ß-arrestins. The third and final wave occurs at intracellular compartments and could be elicited by G proteins or ß-arrestins. This complexity presents multiple challenges, including the correct classification of receptor ligands, the identification of the signaling pathways regulated by each wave, and the underlying molecular mechanisms and physiologic impacts of these waves. Simultaneously, it provides new opportunities to harness the therapeutic potential of the cannabinoid system and other GPCRs. Over the last several years, we have significantly expanded our understanding of the mechanisms and pathways downstream from the CB1R. The identification of receptor mutations that can bias signaling to specific pathways and the use of siRNA technology have been key tools to identifying which signaling cascades are controlled by G proteins or ß-arrestins. Here, we review our current knowledge on CB1R signaling, with particular emphasis on the mechanisms and cascades mediated by ß-arrestins downstream from the CB1R.


Assuntos
Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Animais , Humanos , Modelos Biológicos , beta-Arrestinas/metabolismo
7.
Mol Pharmacol ; 89(6): 618-29, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27009233

RESUMO

Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins ß-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of ß-arrestin-mediated signaling is still very limited. Here we provide a comprehensive view of ß-arrestin-mediated signaling from the cannabinoid 1 receptor (CB1R). By using a signaling biased receptor, we define the cascades, specific receptor kinases, and molecular mechanism underlying ß-arrestin-mediated signaling: We identify the interaction kinetics of CB1R and ß-arrestin 1 during their endocytic trafficking as directly proportional to its efficacy. Finally, we demonstrate that signaling results in the control of genes clustered around prosurvival and proapoptotic functions among others. Together, these studies constitute a comprehensive description of ß-arrestin-mediated signaling from CB1Rs and suggest modulation of receptor endocytic trafficking as a therapeutic approach to control ß-arrestin-mediated signaling.


Assuntos
Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Ácidos Araquidônicos/farmacologia , Benzoxazinas/farmacologia , Endocanabinoides/farmacologia , Quinases de Receptores Acoplados a Proteína G/metabolismo , Glicerídeos/farmacologia , Células HEK293 , Humanos , Morfolinas/farmacologia , Proteínas Mutantes/metabolismo , Naftalenos/farmacologia , Ligação Proteica/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Cell Metab ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901423

RESUMO

Diet may promote brain health in metabolically impaired older individuals. In an 8-week randomized clinical trial involving 40 cognitively intact older adults with insulin resistance, we examined the effects of 5:2 intermittent fasting and the healthy living diet on brain health. Although intermittent fasting induced greater weight loss, the two diets had comparable effects in improving insulin signaling biomarkers in neuron-derived extracellular vesicles, decreasing the brain-age-gap estimate (reflecting the pace of biological aging of the brain) on magnetic resonance imaging, reducing brain glucose on magnetic resonance spectroscopy, and improving blood biomarkers of carbohydrate and lipid metabolism, with minimal changes in cerebrospinal fluid biomarkers for Alzheimer's disease. Intermittent fasting and healthy living improved executive function and memory, with intermittent fasting benefiting more certain cognitive measures. In exploratory analyses, sex, body mass index, and apolipoprotein E and SLC16A7 genotypes modulated diet effects. The study provides a blueprint for assessing brain effects of dietary interventions and motivates further research on intermittent fasting and continuous diets for brain health optimization. For further information, please see ClinicalTrials.gov registration: NCT02460783.

9.
J Extracell Vesicles ; 13(6): e12459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868956

RESUMO

Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co-expressed on single-EVs with the neuronal proteins ß-III-tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM-positive EVs. Levels of L1CAM-positive EVs carrying the neuronal proteins VAMP2 and ß-III-tubulin range from 30% to 63%, in contrast to 0.8%-3.9% of L1CAM-negative EVs. Plasma fluid-phase L1CAM does not bind to single-EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function.


Assuntos
Biomarcadores , Vesículas Extracelulares , Molécula L1 de Adesão de Célula Nervosa , Neurônios , Proteína 2 Associada à Membrana da Vesícula , Humanos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Neurônios/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Tubulina (Proteína)/metabolismo
10.
Alzheimers Res Ther ; 15(1): 156, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730689

RESUMO

BACKGROUND: Neuron-derived extracellular vesicles (NDEVs) in blood may be used to derive biomarkers for the effects of exercise in Alzheimer's disease (AD). For this purpose, we studied changes in neuroprotective proteins proBDNF, BDNF, and humanin in plasma NDEVs from patients with mild to moderate AD participating in the randomized controlled trial (RCT) of exercise ADEX. METHODS: proBDNF, BDNF, and humanin were quantified in NDEVs immunocaptured from the plasma of 95 ADEX participants, randomized into exercise and control groups, and collected at baseline and 16 weeks. Exploratorily, we also quantified NDEV levels of putative exerkines known to respond to exercise in peripheral tissues. RESULTS: NDEV levels of proBDNF, BDNF, and humanin increased in the exercise group, especially in APOE ε4 carriers, but remained unchanged in the control group. Inter-correlations between NDEV biomarkers observed at baseline were maintained after exercise. NDEV levels of putative exerkines remained unchanged. CONCLUSIONS: Findings suggest that the cognitive benefits of exercise could be mediated by the upregulation of neuroprotective factors in NDEVs. Additionally, our results indicate that AD subjects carrying APOE ε4 are more responsive to the neuroprotective effects of physical activity. Unchanged NDEV levels of putative exerkines after physical activity imply that exercise engages different pathways in neurons and peripheral tissues. Future studies should aim to expand upon the effects of exercise duration, intensity, and type in NDEVs from patients with early AD and additional neurodegenerative disorders. TRIAL REGISTRATION: The Effect of Physical Exercise in Alzheimer Patients (ADEX) was registered in ClinicalTrials.gov on April 30, 2012 with the identifier NCT01681602.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Apolipoproteína E4 , Fator Neurotrófico Derivado do Encéfalo , Exercício Físico , Neurônios
11.
Front Mol Biosci ; 10: 1254834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37828917

RESUMO

Introduction: Alzheimer's disease (AD) is currently defined according to biomarkers reflecting the core underlying neuropathological processes: Aß deposition, Tau, and neurodegeneration (ATN). The soluble phase of plasma and plasma neuron-derived extracellular vesicles (NDEVs) are increasingly being investigated as sources of biomarkers. The aim of this study was to examine the comparative biomarker potential of these two biofluids, as well as the association between respective biomarkers. Methods: We retrospectively identified three distinct diagnostic groups of 44 individuals who provided samples at baseline and at a mean of 3.1 years later; 14 were cognitively unimpaired at baseline and remained so (NRM-NRM), 13 had amnestic MCI that progressed to AD dementia (MCI-DEM) and 17 had AD dementia at both timepoints (DEM-DEM). Plasma NDEVs were isolated by immunoaffinity capture targeting the neuronal markers L1CAM, GAP43, and NLGN3. In both plasma and NDEVs, we assessed ATN biomarkers (Aß42, Aß40, total Tau, P181-Tau) alongside several other exploratory markers. Results: The Aß42/Aß40 ratio in plasma and NDEVs was lower in MCI-DEM than NRM-NRM at baseline and its levels in NDEVs decreased over time in all three groups. Similarly, plasma and NDEV-associated Aß42 was lower in MCI-DEM compared to NRM-NRM at baseline and its levels in plasma decreased over time in DEM-DEM. For NDEV-associated proBDNF, compared to NRM-NRM, its levels were lower in MCI-DEM and DEM-DEM at baseline, and they decreased over time in the latter group. No group differences were found for other exploratory markers. NDEV-associated Aß42/Aß40 ratio and proBDNF achieved the highest areas under the curve (AUCs) for discriminating between diagnostic groups, while proBDNF was positively associated with Mini-Mental State Examination (MMSE) score. No associations were found between the two biofluids for any assessed marker. Discussion: The soluble phase of plasma and plasma NDEVs demonstrate distinct biomarker profiles both at a single time point and longitudinally. The lack of association between plasma and NDEV measures indicates that the two types of biofluids demonstrate distinct biomarker signatures that may be attributable to being derived through different biological processes. NDEV-associated proBDNF may be a useful biomarker for AD diagnosis and monitoring.

12.
Res Sq ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502930

RESUMO

Background: Cognitive decline in Alzheimer's disease (AD) is associated with prion-like tau propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EV). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2(nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that tau expression triggers an elevation in brain ceramides and nSMase2 activity. Methods: To determine the therapeutic benefit of inhibiting this elevation, we evaluated the efficacy of PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor, in the PS19 tau transgenic AD murine model. Changes in brain ceramide and sphingomyelin levels, Tau content, histopathology, and nSMase2 target engagement were monitored, as well as changes in the number of brain-derived EVs in plasma and their Tau content. Additionally, we evaluated the ability of PDDC to impede tau propagation in a murine model where an adeno-associated virus(AAV) encoding for P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus and the contralateral transfer to the dentate gyrus was monitored. Results: Similar to human AD, PS19 mice exhibited increased brain ceramides and nSMase2 activity; both were completely normalized by PDDC treatment. PS19 mice exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all pathologic features of human AD. PDDC treatment significantly attenuated these aberrant changes. Mouse plasma isolated from PDDC-treated PS19 mice exhibited reduced levels of neuron- and microglia-derived EVs, the former carrying lower phosphorylated Tau(pTau) levels, compared to untreated mice. In the AAV tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly decreased tau spreading to the contralateral side. Conclusions: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity leading to the slowing of tau spread in AD mice.

13.
Transl Neurodegener ; 12(1): 56, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049923

RESUMO

BACKGROUND: Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity. METHODS: To determine the therapeutic benefit of inhibiting this elevation, we evaluated PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor in the transgenic PS19 AD mouse model. Additionally, we directly evaluated the effect of PDDC on tau propagation in a mouse model where an adeno-associated virus (AAV) encoding P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus. The contralateral transfer of the double mutant human tau to the dentate gyrus was monitored. We examined ceramide levels, histopathological changes, and pTau content within EVs isolated from the mouse plasma. RESULTS: Similar to human AD, the PS19 mice exhibited increased brain ceramide levels and nSMase2 activity; both were completely normalized by PDDC treatment. The PS19 mice also exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all of which were pathologic features of human AD. PDDC treatment reduced these changes. The plasma of PDDC-treated PS19 mice had reduced levels of neuronal- and microglial-derived EVs, the former carrying lower pTau levels, compared to untreated mice. In the tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly reduced the amount of tau propagation to the contralateral side. CONCLUSIONS: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity, leading to the slowing of tau spread in AD mice.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Ceramidas/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo
14.
J Extracell Biol ; 2(8)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37744304

RESUMO

Extracellular vesicles and particles (EVPs) are secreted by organs across the body into different circulatory systems, including the bloodstream, and reflect pathophysiologic conditions of the organ. However, the heterogeneity of EVPs in the blood makes it challenging to determine their organ of origin. We hypothesized that small (s)EVPs (<100 nm in diameter) in the bloodstream carry distinctive protein signatures associated with each originating organ, and we investigated this possibility by studying the proteomes of sEVPs produced by six major organs (brain, liver, lung, heart, kidney, fat). We found that each organ contained distinctive sEVP proteins: 68 proteins were preferentially found in brain sEVPs, 194 in liver, 39 in lung, 15 in heart, 29 in kidney, and 33 in fat. Furthermore, we isolated sEVPs from blood and validated the presence of sEVP proteins associated with the brain (DPP6, SYT1, DNM1L), liver (FABPL, ARG1, ASGR1/2), lung (SFPTA1), heart (CPT1B), kidney (SLC31), and fat (GDN). We further discovered altered levels of these proteins in serum sEVPs prepared from old mice compared to young mice. In sum, we have cataloged sEVP proteins that can serve as potential biomarkers for organ identification in serum and show differential expression with age.

15.
Cells ; 10(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922642

RESUMO

Circulating neuronal extracellular vesicles (NEVs) of Alzheimer's disease (AD) patients show high Tau and ß-amyloid (Aß) levels, whereas their astrocytic EVs (AEVs) contain high complement levels. To validate EV proteins as AD biomarkers, we immunocaptured NEVs and AEVs from plasma collected from fifteen wild type (WT), four 2xTg-AD, nine 5xFAD, and fifteen 3xTg-AD mice and assessed biomarker relationships with brain tissue levels. NEVs from 3xTg-AD mice had higher total Tau (p = 0.03) and p181-Tau (p = 0.0004) compared to WT mice. There were moderately strong correlations between biomarkers in NEVs and cerebral cortex and hippocampus (total Tau: cortex, r = 0.4, p = 0.009; p181-Tau: cortex, r = 0.7, p < 0.0001; hippocampus, r = 0.6, p < 0.0001). NEVs from 5xFAD compared to other mice had higher Aß42 (p < 0.005). NEV Aß42 had moderately strong correlations with Aß42 in cortex (r = 0.6, p = 0.001) and hippocampus (r = 0.7, p < 0.0001). AEV C1q was elevated in 3xTg-AD compared to WT mice (p = 0.005); AEV C1q had moderate-strong correlations with C1q in cortex (r = 0.9, p < 0.0001) and hippocampus (r = 0.7, p < 0.0001). Biomarkers in circulating NEVs and AEVs reflect their brain levels across multiple AD mouse models supporting their potential use as a "liquid biopsy" for neurological disorders.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Biomarcadores/sangue , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteínas tau/genética
16.
Neurobiol Aging ; 97: 65-72, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160263

RESUMO

We used plasma neuronal extracellular vesicles to examine how neuronal insulin signaling proteins relate cross-sectionally to brain structure in nondemented older adults with varying levels of cortical amyloid. Extracellular vesicles enriched for neuronal origin by anti-L1CAM immunoabsorption were isolated from plasma of Atherosclerosis Risk in Communities-Positron Emission Tomography study participants (n = 88; mean age: 77 years [standard deviation: 6]). Neuronal extracellular vesicle levels of phosphorylated insulin signaling cascade proteins were quantified. Brain volume and white matter hyperintensity (WMH) volume were assessed using 3T magnetic resonance imaging. After adjusting for demographic variables and extracellular vesicle marker Alix, higher levels of a neuronal insulin signaling composite measure were associated with lower WMH and greater temporal lobe volume. Secondary analyses found the levels of downstream protein kinases involved in cell survival (p70S6K) and tau phosphorylation/neuroinflammation (GSK-3ß) to be most strongly associated with WMH and temporal lobe volume, respectively. Associations between neuronal insulin signaling and lower WMH volume were attenuated in participants with elevated cortical amyloid. These results suggest that enhanced neuronal proximal insulin signaling is associated with preserved brain structure in nondemented older adults.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/patologia , Hypocreales/fisiologia , Insulina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Idoso , Idoso de 80 Anos ou mais , Aterosclerose , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Tamanho do Órgão , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fatores de Risco , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
17.
J Psychiatr Res ; 133: 82-92, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316649

RESUMO

Accumulating evidence suggests that disrupted insulin signaling is involved in bipolar disorder (BD) pathogenesis. Herein, we aimed to directly explore the potential role of neuronal insulin signaling using an innovative technique based on biomarkers derived from plasma extracellular vesicles enriched for neuronal origin (NEVs). We leveraged plasma samples from a randomized, double-blind, placebo-controlled, 12-week clinical trial evaluating infliximab as a treatment of bipolar depression. We isolated NEVs using immunoprecipitation against neuronal marker L1CAM from samples collected at baseline and weeks 2, 6 and 12 (endpoint) and measured NEV biomarkers using immunoassays. We assessed neuronal insulin signaling at its first node (IRS-1) and along the canonical (Akt, GSK-3ß, p70S6K) and alternative (ERK1/2, JNK and p38-MAPK) pathways. A subset of participants (n = 27) also underwent whole-brain magnetic resonance imaging (MRI) at baseline and endpoint. Pre-treatment, NEV biomarkers of insulin signaling were independently associated with cognitive function and MRI measures (i.e. hippocampal and ventromedial prefrontal cortex [vmPFC] volumes). In fact, the association between IRS-1 phosphorylation at serine site 312 (pS312-IRS-1), an indicator of insulin resistance, and cognitive dysfunction was mediated by vmPFC volume. In the longitudinal analysis, patients treated with infliximab, a tumor necrosis factor-alpha antagonist with known insulin sensitizing properties, compared to those treated with placebo, had augmented phosphorylation of proteins from the alternative pathway. Infliximab responders had significant increases in phosphorylated JNK levels, relative to infliximab non-responders and placebo responders. In addition, treatment with infliximab resulted in increase in MRI measures of brain volume; treatment-related changes in the dorsolateral prefrontal cortex volume were mediated by changes in biomarkers from the insulin alternative pathway. In conclusion, our findings support the idea that brain insulin signaling is a target for further mechanistic and therapeutic investigations.


Assuntos
Transtorno Bipolar , Vesículas Extracelulares , Resistência à Insulina , Adulto , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Insulina/metabolismo , Fosforilação
18.
J Extracell Vesicles ; 10(2): e12035, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33408815

RESUMO

Chronic inflammation is thought to contribute to the early pathogenesis of Alzheimer's disease (AD). However, the precise mechanism by which inflammatory cytokines promote the formation and deposition of Aß remains unclear. Available data suggest that applications of inflammatory cytokines onto isolated neurons do not promote the formation of Aß, suggesting an indirect mechanism of action. Based on evidence astrocyte derived extracellular vesicles (astrocyte derived EVs) regulate neuronal functions, and data that inflammatory cytokines can modify the molecular cargo of astrocyte derived EVs, we sought to determine if IL-1ß promotes the formation of Aß indirectly through actions of astrocyte derived EVs on neurons. The production of Aß was increased when neurons were exposed to astrocyte derived EVs shed in response to IL-1ß (astrocyte derived EV-IL-1ß). The mechanism for this effect involved an enrichment of Casein kinase 1 (CK1) in astrocyte derived EV-IL-1ß. This astrocyte derived CK1 was delivered to neurons where it formed a complex with neuronal APC and GSK3 to inhibit the ß-catenin degradation. Stabilized ß-catenin translocated to the nucleus and bound to Hnrnpc gene at promoter regions. An increased cellular concentration of hnRNP C promoted the translation of APP by outcompeting the translational repressor fragile X mental retardation protein (FMRP) bound to APP mRNA. An increased amount of APP protein became co-localized with BACE1 in enlarged membrane microdomains concurrent with increased production of Aß. These findings identify a mechanism whereby inflammation promotes the formation of Aß through the actions of astrocyte derived EV-IL-1ß on neurons.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/metabolismo , Caseína Quinase I/metabolismo , Vesículas Extracelulares/metabolismo , Inflamação/patologia , Interleucina-1beta/farmacologia , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Estudos de Casos e Controles , Caseína Quinase I/genética , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/imunologia , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Ratos , Ratos Sprague-Dawley
19.
Cells ; 9(7)2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635578

RESUMO

We have previously shown that blood astrocytic-origin extracellular vesicles (AEVs) from Alzheimer's disease (AD) patients contain high complement levels. To test the hypothesis that circulating EVs from AD patients can induce complement-mediated neurotoxicity involving Membrane Attack Complex (MAC) formation, we assessed the effects of immunocaptured AEVs (using anti-GLAST antibody), in comparison with neuronal-origin (N)EVs (using anti-L1CAM antibody), and nonspecific CD81+ EVs (using anti-CD81 antibody), from the plasma of AD, frontotemporal lobar degeneration (FTLD), and control participants. AEVs (and, less effectively, NEVs) of AD participants induced Membrane Attack Complex (MAC) expression on recipient neurons (by immunohistochemistry), membrane disruption (by EthD-1 assay), reduced neurite density (by Tuj-1 immunohistochemistry), and decreased cell viability (by MTT assay) in rat cortical neurons and human iPSC-derived neurons. Demonstration of decreased cell viability was replicated in a separate cohort of autopsy-confirmed AD patients. These effects were not produced by CD81+ EVs from AD participants or AEVs/NEVs from FTLD or control participants, and were suppressed by the MAC inhibitor CD59 and other complement inhibitors. Our results support the stated hypothesis and should motivate future studies on the roles of neuronal MAC deposition and AEV/NEV uptake, as effectors of neurodegeneration in AD.


Assuntos
Astrócitos/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Neurônios/metabolismo , Animais , Antígenos CD59/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Ativação do Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Ratos
20.
CNS Neurosci Ther ; 26(6): 636-649, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31828969

RESUMO

AIM: Traumatic brain injury (TBI) is one of the most common causes of morbidity and mortality of both young adults and the elderly, and is a key contributing factor in about 30% of all injury-associated deaths occurring within the United States of America. Albeit substantial impact has been made to improve our comprehension of the mechanisms that underpin the primary and secondary injury stages initiated by a TBI incident, this knowledge has yet to successfully translate into the development of an effective TBI pharmacological treatment. Developing consent suggests that a TBI can concomitantly trigger multiple TBI-linked cascades that then progress in parallel and, if correct, the multifactorial nature of TBI would make the discovery of a single effective mechanism-targeted drug unlikely. DISCUSSION: We review recent data indicating that the small molecular weight drug (-)-phenserine tartrate (PhenT), originally developed for Alzheimer's disease (AD), effectively inhibits a broad range of mechanisms pertinent to mild (m) and moderate (mod)TBI, which in combination underpin the ensuing cognitive and motor impairments. In cellular and animal models at clinically translatable doses, PhenT mitigated mTBI- and modTBI-induced programmed neuronal cell death (PNCD), oxidative stress, glutamate excitotoxicity, neuroinflammation, and effectively reversed injury-induced gene pathways leading to chronic neurodegeneration. In addition to proving efficacious in well-characterized animal TBI models, significantly mitigating cognitive and motor impairments, the drug also has demonstrated neuroprotective actions against ischemic stroke and the organophosphorus nerve agent and chemical weapon, soman. CONCLUSION: In the light of its tolerability in AD clinical trials, PhenT is an agent that can be fast-tracked for evaluation in not only civilian TBI, but also as a potentially protective agent in battlefield conditions where TBI and chemical weapon exposure are increasingly jointly occurring.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Fisostigmina/análogos & derivados , Tartaratos/administração & dosagem , Animais , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/química , Fisostigmina/administração & dosagem , Fisostigmina/química , Tartaratos/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA