Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Genes Dev ; 32(13-14): 909-914, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29967290

RESUMO

The senescence-associated secretory phenotype (SASP) is a major trait of senescent cells, but the molecular regulators of SASP factor secretion are poorly understood. Mass spectrometry analysis revealed that secretory carrier membrane protein 4 (SCAMP4) levels were strikingly elevated on the surface of senescent cells compared with proliferating cells. Interestingly, silencing SCAMP4 in senescent fibroblasts reduced the secretion of SASP factors, including interleukin 6 (IL6), IL8, growth differentiation factor 15 (GDF-15), C-X-C motif chemokine ligand 1 (CXCL1), and IL7, while, conversely, SCAMP4 overexpression in proliferating fibroblasts increased SASP factor secretion. Our results indicate that SCAMP4 accumulates on the surface of senescent cells, promotes SASP factor secretion, and critically enhances the SASP phenotype.


Assuntos
Proteínas de Transporte/metabolismo , Senescência Celular/genética , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Proliferação de Células/fisiologia , Fibroblastos/citologia , Inativação Gênica , Humanos , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
2.
Genes Dev ; 31(15): 1529-1534, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28877934

RESUMO

Senescent cell accumulation in aging tissues is linked to age-associated diseases and declining function, prompting efforts to eliminate them. Mass spectrometry analysis revealed that DPP4 (dipeptidyl peptidase 4) was selectively expressed on the surface of senescent, but not proliferating, human diploid fibroblasts. Importantly, the differential presence of DPP4 allowed flow cytometry-mediated isolation of senescent cells using anti-DPP4 antibodies. Moreover, antibody-dependent cell-mediated cytotoxicity (ADCC) assays revealed that the cell surface DPP4 preferentially sensitized senescent, but not dividing, fibroblasts to cytotoxicity by natural killer cells. In sum, the selective expression of DPP4 on the surface of senescent cells enables their preferential elimination.


Assuntos
Senescência Celular/fisiologia , Dipeptidil Peptidase 4/metabolismo , Proteínas de Membrana/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Citotoxicidade Celular Dependente de Anticorpos , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Diploide , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/enzimologia , Espectrometria de Massas , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo
3.
Genes Dev ; 30(10): 1224-39, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27198227

RESUMO

Some mitochondrial long noncoding RNAs (lncRNAs) are encoded by nuclear DNA, but the mechanisms that mediate their transport to mitochondria are poorly characterized. Using affinity RNA pull-down followed by mass spectrometry analysis, we found two RNA-binding proteins (RBPs), HuR (human antigen R) and GRSF1 (G-rich RNA sequence-binding factor 1), that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1 (chromosome region maintenance 1)-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Loss of GRSF1 lowered the mitochondrial levels of RMRP, in turn suppressing oxygen consumption rates and modestly reducing mitochondrial DNA replication priming. Our findings indicate that RBPs HuR and GRSF1 govern the cytoplasmic and mitochondrial localization of the lncRNA RMRP, which is encoded by nuclear DNA but has key functions in mitochondria.


Assuntos
Núcleo Celular/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA Longo não Codificante/metabolismo , Transporte Ativo do Núcleo Celular , Células HEK293 , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico
4.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895006

RESUMO

Previously, we demonstrated that mitochondrial transplantation has beneficial effects in a polymicrobial sepsis model. However, the mechanism has not been fully investigated. Mitochondria have their own genes, and genomic changes in sepsis are an important issue in terms of pathophysiology, biomarkers, and therapeutic targets. To investigate the changes in transcriptomic features after mitochondrial transplantation in a polymicrobial sepsis model, we used a rat model of fecal slurry polymicrobial sepsis. Total RNA from splenocytes of sham-operated (SHAM, n = 10), sepsis-induced (SEPSIS, n = 7), and sepsis receiving mitochondrial transplantation (SEPSIS + MT, n = 8) samples was extracted and we conducted a comparative transcriptome-wide analysis between three groups. We also confirmed these results with qPCR. In terms of percentage of mitochondrial mapped reads, the SEPSIS + MT group had a significantly higher mapping ratio than the others. RT1-M2 and Cbln2 were identified as highly expressed in SEPSIS + MT compared with SEPSIS. Using SHAM expression levels as another control variable, we further identified six genes (Fxyd4, Apex2l1, Kctd4, 7SK, SNORD94, and SNORA53) that were highly expressed after sepsis induction and observed that their expression levels were attenuated by mitochondrial transplantation. Changes in transcriptomic features were identified after mitochondrial transplantation in sepsis. This might provide a hint for exploring the mechanism of mitochondrial transplantation in sepsis.


Assuntos
Sepse , Transcriptoma , Ratos , Animais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Perfilação da Expressão Gênica , Sepse/genética , Sepse/metabolismo
5.
Nucleic Acids Res ; 48(7): 3789-3805, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31980816

RESUMO

By interacting with proteins and nucleic acids, the vast family of mammalian circRNAs is proposed to influence many biological processes. Here, RNA sequencing analysis of circRNAs differentially expressed during myogenesis revealed that circSamd4 expression increased robustly in mouse C2C12 myoblasts differentiating into myotubes. Moreover, silencing circSamd4, which is conserved between human and mouse, delayed myogenesis and lowered the expression of myogenic markers in cultured myoblasts from both species. Affinity pulldown followed by mass spectrometry revealed that circSamd4 associated with PURA and PURB, two repressors of myogenesis that inhibit transcription of the myosin heavy chain (MHC) protein family. Supporting the hypothesis that circSamd4 might complex with PUR proteins and thereby prevent their interaction with DNA, silencing circSamd4 enhanced the association of PUR proteins with the Mhc promoter, while overexpressing circSamd4 interfered with the binding of PUR proteins to the Mhc promoter. These effects were abrogated when using a mutant circSamd4 lacking the PUR binding site. Our results indicate that the association of PUR proteins with circSamd4 enhances myogenesis by contributing to the derepression of MHC transcription.


Assuntos
Regulação da Expressão Gênica , Desenvolvimento Muscular/genética , RNA Circular/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Circular/química , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 47(5): 2472-2486, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30753671

RESUMO

The RNA-binding protein GRSF1 (G-rich RNA sequence-binding factor 1) critically maintains mitochondrial homeostasis. Accordingly, loss of GRSF1 impaired mitochondrial respiration and increased the levels of reactive oxygen species (ROS), triggering DNA damage, growth suppression, and a senescent phenotype characterized by elevated production and secretion of interleukin (IL)6. Here, we characterize the pathways that govern IL6 production in response to mitochondrial dysfunction in GRSF1-depleted cells. We report that loss of GRSF1 broadly altered protein expression programs, impairing the function of respiratory complexes I and IV. The rise in oxidative stress led to increased DNA damage and activation of mTOR, which in turn activated NF-κB to induce IL6 gene transcription and orchestrate a pro-inflammatory program. Collectively, our results indicate that GRSF1 helps preserve mitochondrial homeostasis, in turn preventing oxidative DNA damage and the activation of mTOR and NF-κB, and suppressing a transcriptional pro-inflammatory program leading to increased IL6 production.


Assuntos
Inflamação/genética , Interleucina-6/genética , Proteínas de Ligação a Poli(A)/genética , Serina-Treonina Quinases TOR/genética , Dano ao DNA/genética , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica/genética , Humanos , Inflamação/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , NF-kappa B/genética , Estresse Oxidativo/genética , Proteínas de Ligação a RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transcrição Gênica
7.
Nucleic Acids Res ; 44(5): 2378-92, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26819413

RESUMO

The function of the vast majority of mammalian long noncoding (lnc) RNAs remains unknown. Here, analysis of a highly abundant mammalian lncRNA, OIP5-AS1, known as cyrano in zebrafish, revealed that OIP5-AS1 reduces cell proliferation. In human cervical carcinoma HeLa cells, the RNA-binding protein HuR, which enhances cell proliferation, associated with OIP5-AS1 and stabilized it. Tagging OIP5-AS1 with MS2 hairpins to identify associated microRNAs revealed that miR-424 interacted with OIP5-AS1 and competed with HuR for binding to OIP5-AS1. We further identified a 'sponge' function for OIP5-AS1, as high levels of OIP5-AS1 increased HuR-OIP5-AS1 complexes and prevented HuR interaction with target mRNAs, including those that encoded proliferative proteins, while conversely, lowering OIP5-AS1 increased the abundance of HuR complexes with target mRNAs. We propose that OIP5-AS1 serves as a sponge or a competing endogenous (ce)RNA for HuR, restricting its availability to HuR target mRNAs and thereby repressing HuR-elicited proliferative phenotypes.


Assuntos
Proteína Semelhante a ELAV 1/genética , Regulação da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Proliferação de Células/genética , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Dados de Sequência Molecular , Ligação Proteica , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
8.
Nucleic Acids Res ; 44(5): 2393-408, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26819411

RESUMO

Skeletal muscle contains long multinucleated and contractile structures known as muscle fibers, which arise from the fusion of myoblasts into multinucleated myotubes during myogenesis. The myogenic regulatory factor (MRF) MYF5 is the earliest to be expressed during myogenesis and functions as a transcription factor in muscle progenitor cells (satellite cells) and myocytes. In mouse C2C12 myocytes, MYF5 is implicated in the initial steps of myoblast differentiation into myotubes. Here, using ribonucleoprotein immunoprecipitation (RIP) analysis, we discovered a novel function for MYF5 as an RNA-binding protein which associated with a subset of myoblast mRNAs. One prominent MYF5 target was Ccnd1 mRNA, which encodes the key cell cycle regulator CCND1 (Cyclin D1). Biotin-RNA pulldown, UV-crosslinking and gel shift experiments indicated that MYF5 was capable of binding the 3' untranslated region (UTR) and the coding region (CR) of Ccnd1 mRNA. Silencing MYF5 expression in proliferating myoblasts revealed that MYF5 promoted CCND1 translation and modestly increased transcription of Ccnd1 mRNA. Accordingly, overexpressing MYF5 in C2C12 cells upregulated CCND1 expression while silencing MYF5 reduced myoblast proliferation as well as differentiation of myoblasts into myotubes. Moreover, MYF5 silencing reduced myogenesis, while ectopically restoring CCND1 abundance partially rescued the decrease in myogenesis seen after MYF5 silencing. We propose that MYF5 enhances early myogenesis in part by coordinately elevating Ccnd1 transcription and Ccnd1 mRNA translation.


Assuntos
Ciclina D1/genética , Desenvolvimento Muscular/genética , Fator Regulador Miogênico 5/genética , RNA Mensageiro/genética , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ciclina D1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Análise em Microsséries , Mioblastos , Fator Regulador Miogênico 5/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
9.
Biochim Biophys Acta ; 1859(1): 209-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26141605

RESUMO

Aging is a process during which progressive deteriorating of cells, tissues, and organs over time lead to loss of function, disease, and death. Towards the goal of extending human health span, there is escalating interest in understanding the mechanisms that govern aging-associated pathologies. Adequate regulation of expression of coding and noncoding genes is critical for maintaining organism homeostasis and preventing disease processes. Long noncoding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression at all levels--transcriptional, post-transcriptional and post-translational. In this review, we discuss our emerging understanding of lncRNAs implicated in aging illnesses. We focus on diseases arising from age-driven impairment in energy metabolism (obesity, diabetes), the declining capacity to respond homeostatically to proliferative and damaging stimuli (cancer, immune dysfunction), and neurodegeneration. We identify the lncRNAs involved in these ailments and discuss the rising interest in lncRNAs as diagnostic and therapeutic targets to ameliorate age-associated pathologies and prolong health. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.


Assuntos
Envelhecimento/genética , Metabolismo Energético/genética , RNA Longo não Codificante/genética , Envelhecimento/patologia , Regulação da Expressão Gênica , Homeostase , Humanos , Neoplasias/genética , Neoplasias/patologia
10.
RNA Biol ; 14(3): 361-369, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28080204

RESUMO

HuR influences gene expression programs and hence cellular phenotypes by binding to hundreds of coding and noncoding linear RNAs. However, whether HuR binds to circular RNAs (circRNAs) and impacts on their function is unknown. Here, we have identified en masse circRNAs binding HuR in human cervical carcinoma HeLa cells. One of the most prominent HuR target circRNAs was hsa_circ_0031288, renamed CircPABPN1 as it arises from the PABPN1 pre-mRNA. Further analysis revealed that HuR did not influence CircPABPN1 abundance; interestingly, however, high levels of CircPABPN1 suppressed HuR binding to PABPN1 mRNA. Evaluation of PABPN1 mRNA polysomes indicated that PABPN1 translation was modulated positively by HuR and hence negatively by CircPABPN1. We propose that the extensive binding of CircPABPN1 to HuR prevents HuR binding to PABPN1 mRNA and lowers PABPN1 translation, providing the first example of competition between a circRNA and its cognate mRNA for an RBP that affects translation.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Proteína I de Ligação a Poli(A)/genética , Biossíntese de Proteínas , RNA/genética , RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Modelos Biológicos , Ligação Proteica , RNA Circular , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
RNA Biol ; 13(7): 622-34, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-26690054

RESUMO

Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica/fisiologia , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Ubiquinona/biossíntese , Regiões 3' não Traduzidas/fisiologia , Proteína Semelhante a ELAV 1/genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Humanos , Ubiquinona/genética
12.
Nucleic Acids Res ; 42(15): 10099-111, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25123665

RESUMO

Noncoding RNAs (ncRNAs) and RNA-binding proteins are potent post-transcriptional regulators of gene expression. The ncRNA 7SL is upregulated in cancer cells, but its impact upon the phenotype of cancer cells is unknown. Here, we present evidence that 7SL forms a partial hybrid with the 3'-untranslated region (UTR) of TP53 mRNA, which encodes the tumor suppressor p53. The interaction of 7SL with TP53 mRNA reduced p53 translation, as determined by analyzing p53 expression levels, nascent p53 translation and TP53 mRNA association with polysomes. Silencing 7SL led to increased binding of HuR to TP53 mRNA, an interaction that led to the promotion of p53 translation and increased p53 abundance. We propose that the competition between 7SL and HuR for binding to TP53 3'UTR contributes to determining the magnitude of p53 translation, in turn affecting p53 levels and the growth-suppressive function of p53. Our findings suggest that targeting 7SL may be effective in the treatment of cancers with reduced p53 levels.


Assuntos
Proteínas ELAV/metabolismo , Regulação Neoplásica da Expressão Gênica , Biossíntese de Proteínas , RNA Citoplasmático Pequeno/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Autofagia , Ligação Competitiva , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo
14.
Hepatology ; 57(3): 1055-67, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23079745

RESUMO

UNLABELLED: Sirtuins are nicotinamide adenine dinucleotide oxidized form (NAD(+) )-dependent deacetylases and function in cellular metabolism, stress resistance, and aging. For sirtuin7 (SIRT7), a role in ribosomal gene transcription is proposed, but its function in cancer has been unclear. In this study we show that SIRT7 expression was up-regulated in a large cohort of human hepatocellular carcinoma (HCC) patients. SIRT7 knockdown influenced the cell cycle and caused a significant increase of liver cancer cells to remain in the G1 /S phase and to suppress growth. This treatment restored p21(WAF1/Cip1) , induced Beclin-1, and repressed cyclin D1. In addition, sustained suppression of SIRT7 reduced the in vivo tumor growth rate in a mouse xenograft model. To explore mechanisms in SIRT7 regulation, microRNA (miRNA) profiling was carried out. This identified five significantly down-regulated miRNAs in HCC. Bioinformatics analysis of target sites and ectopic expression in HCC cells showed that miR-125a-5p and miR-125b suppressed SIRT7 and cyclin D1 expression and induced p21(WAF1/Cip1) -dependent G1 cell cycle arrest. Furthermore, treatment of HCC cells with 5-aza-2'-deoxycytidine or ectopic expression of wildtype but not mutated p53 restored miR-125a-5p and miR-125b expression and inhibited tumor cell growth, suggesting their regulation by promoter methylation and p53 activity. To show the clinical significance of these findings, mutations in the DNA binding domain of p53 and promoter methylation of miR-125b were investigated. Four out of nine patients with induced SIRT7 carried mutations in the p53 gene and one patient showed hypermethylation of the miR-125b promoter region. CONCLUSION: Our findings suggest the oncogenic potential of SIRT7 in hepatocarcinogenesis. A regulatory loop is proposed whereby SIRT7 inhibits transcriptional activation of p21(WAF1/Cip1) by way of repression of miR-125a-5p and miR-125b. This makes SIRT7 a promising target in cancer therapy. (HEPATOLOGY 2013).


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Sirtuínas/genética , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Genômica , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , RNA Mensageiro/metabolismo , Sirtuínas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Hepatology ; 56(2): 644-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22392728

RESUMO

UNLABELLED: Ubiquitin-binding histone deacetylase 6 (HDAC6) is uniquely endowed with tubulin deacetylase activity and plays an important role in the clearance of misfolded protein by autophagy. In cancer, HDAC6 has become a target for drug development due to its major contribution to oncogenic cell transformation. In the present study we show that HDAC6 expression was down-regulated in a large cohort of human hepatocellular carcinoma (HCC) patients, and that low expression of HDAC6 was significantly associated with poor prognosis of HCC patients in 5-year overall, disease-free, and recurrence-free survival. Notably, we observed that ectopic overexpression of HDAC6 suppressed tumor cell growth and proliferation in various liver cancer cells, and elicited increased LC3B-II conversion and autophagic vacuole formation without causing apoptotic cell death or cell cycle inhibition. In addition, the sustained overexpression of HDAC6 reduced the in vivo tumor growth rate in a mouse xenograft model. It was also found that HDAC6 mediated autophagic cell death by way of Beclin 1 and activation of the LC3-II pathway in liver cancer cells, and that HDAC6 overexpression activated c-Jun NH2-terminal kinase (JNK) and increased the phosphorylation of c-Jun. In contrast, the induction of Beclin 1 expression was blocked by SP600125 (a specific inhibitor of JNK) or by small interfering RNA directed against HDAC6. CONCLUSION: Our findings suggest that loss of HDAC6 expression in human HCCs and tumor suppression by HDAC6 occur by way of activation of caspase-independent autophagic cell death through the JNK/Beclin 1 pathway in liver cancer and, thus, that a novel tumor suppressor function mechanism involving HDAC6 may be amenable to nonepigenetic regulation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Carcinoma Hepatocelular , Histona Desacetilases/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas , Proteínas de Membrana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteína Beclina-1 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes Supressores de Tumor/fisiologia , Células Hep G2 , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Transplante de Neoplasias , Prognóstico , RNA Interferente Pequeno/genética , Transplante Heterólogo
16.
Mech Ageing Dev ; 214: 111853, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453659

RESUMO

Cellular senescence is a state of irreversible cell cycle arrest that is triggered and controlled by various external and/or internal factors. Among them, the regulation of senescence-associated genes is an important molecular event that plays a role in senescence. The regulation of gene expression can be achieved by various types of modulating mechanisms, and RNA-binding proteins (RBPs) are commonly known as critical regulators targeting a global range of transcripts. RBPs bind to RNA-binding motifs of the target transcripts and are involved in post-transcriptional processes such as RNA transport, stabilization, splicing, and decay. These RBPs may also play critical roles in cellular senescence by regulating the expression of senescence-associated genes. The biological functions of RBPs in controlling cellular senescence are being actively studied. Herein, we summarized the RBPs that influence cellular senescence, particularly by regulating processes such as the senescence-associated secretory phenotype, cell cycle, and mitochondrial function.


Assuntos
Senescência Celular , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/genética , Senescência Celular/fisiologia
17.
J Cell Biochem ; 113(6): 2167-77, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492270

RESUMO

Histone deacetylase 2 (HDAC2) is crucial for embryonic development, affects cytokine signaling relevant for immune responses, and is often significantly overexpressed in solid tumors, but little is known of its role in human lung cancer. In this study, we demonstrated the aberrant expression of HDAC2 in lung cancer tissues and investigated oncogenic properties of HDAC2 in human lung cancer cell lines. HDAC2 inactivation resulted in regression of tumor cell growth and activation of cellular apoptosis via p53 and Bax activation and Bcl2 suppression. In cell cycle regulation, HDAC2 inactivation caused induction of p21WAF1/CIP1 expression, and simultaneously suppressed the expressions of cyclin E2, cyclin D1, and CDK2, respectively. Consequently, this led to the hypophosphorylation of pRb protein in G1/S transition and thereby inactivated E2F/DP1 target gene transcriptions of A549 cells. In addition, we demonstrated that HDAC2 directly regulated p21WAF1/CIP1 expression in a p53-independent manner. However, HDAC1 was not related to p21WAF1/CIP1 expression and tumorigenesis of lung cancer. Lastly, we observed that sustained-suppression of HDAC2 in A549 lung cancer cells attenuated in vitro tumorigenic properties and in vivo tumor growth of the mouse xenograft model. Taken together, we suggest that the aberrant regulation of HDAC2 and its epigenetic regulation of gene transcription in apoptosis and cell cycle components play an important role in the development of lung cancer.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas de Ciclo Celular/metabolismo , Histona Desacetilase 2/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclinas/metabolismo , Fatores de Transcrição E2F/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Fosforilação , Interferência de RNA , RNA Interferente Pequeno , Proteína do Retinoblastoma/metabolismo , Transcrição Gênica , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
18.
Environ Sci Technol ; 46(23): 12882-9, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23153324

RESUMO

Persistent organic pollutants (POPs) are degradation-resistant anthropogenic chemicals that accumulate in the food chain and in adipose tissue, and are among the most hazardous compounds ever synthesized. However, their toxic mechanisms are still undefined. To investigate whether characteristic molecular signatures can discriminate individual POP and provide prediction markers for the early detection of POPs exposure in an animal model, we performed transcriptomic analysis of rat liver tissues after exposure to POPs. The six different POPs (toxaphene, hexachlorobenzene, chlordane, mirex, dieldrin, and heptachlor) were administered to 11-week-old male Sprague-Dawley rats, and after 48 h of exposure, RNAs were extracted from liver tissues and subjected to rat whole genome expression microarrays. Early during exposure, conventional toxicological analysis including changes in the body and organ weight, histopathological examination, and blood biochemical analysis did not reflect any toxicant stresses. However, unsupervised gene expression analysis of rat liver tissues revealed in a characteristic molecular signature for each toxicant, and supervised analysis identified 2708 outlier genes that discerned the POPs exposure group from the vehicle-treated control. Combination analysis of two different multiclassifications suggested 384 genes as early detection markers for predicting each POP exposure with 100% accuracy. The data from large-scale gene expression analysis of a different POP exposure in rat model suggest that characteristic expression profiles exist in liver hepatic cells and multiclassification of POP-specific molecular signatures can discriminate each toxicant at an early exposure time. The use of these molecular markers may be more widely implemented in combination with more traditional techniques for assessment and prediction of toxicity exposure to POPs from an environmental aspect.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Poluentes Ambientais/toxicidade , Fígado/efeitos dos fármacos , Praguicidas/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieldrin/toxicidade , Fungicidas Industriais/toxicidade , Heptacloro/toxicidade , Hexaclorobenzeno/toxicidade , Inseticidas/toxicidade , Fígado/metabolismo , Fígado/patologia , Masculino , Mirex/toxicidade , Ratos , Ratos Sprague-Dawley , Toxafeno/toxicidade , Testes de Toxicidade/métodos
19.
Front Pharmacol ; 13: 1050758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438839

RESUMO

EGFR-mediated tumors have been targeted to overcome several different malignant cancers. EGFR overexpression and mutations are directly related to the malignancy, which makes the therapy more complicated. One reason for the malignancy is the induction of AP1 followed by inflammation via IL-6 secretion. Current therapeutic strategies to overcome EGFR-mediated tumors are tyrosine kinase inhibitors (TKIs), anti-EGFR monoclonal antibodies, and the combination of these two agents with classic chemotherapy or immune checkpoint inhibitors (ICIs). Although the strategies are straightforward and have shown promising efficacy in several studies, there are still hurdles to overcoming the adverse effects and limited efficacy. This study reviews the current therapeutic strategies to target EGFR family members, how they work, and their effects and limitations. We also suggest developing novel strategies to target EGFR-mediated tumors in a novel approach. A lysosome is the main custodial staff to discard unwanted amounts of EGFR and other receptor tyrosine kinase molecules. Targeting this organelle may be a new approach to overcoming EGFR-mediated cancers.

20.
Sci Rep ; 12(1): 364, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013429

RESUMO

RNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNAs directing numerous essential roles in cellular physiology. Nuclear Factor 90 (NF90) is an RBP encoded by the interleukin enhancer-binding factor 3 (ILF3) gene that has been found to influence RNA metabolism at several levels, including pre-RNA splicing, mRNA turnover, and translation. To systematically identify the RNAs that interact with NF90, we carried out iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) analysis in the human embryonic fibroblast cell line HEK-293. Interestingly, many of the identified RNAs encoded proteins involved in the response to viral infection and RNA metabolism. We validated a subset of targets and investigated the impact of NF90 on their expression levels. Two of the top targets, IRF3 and IRF9 mRNAs, encode the proteins IRF3 and IRF9, crucial regulators of the interferon pathway involved in the SARS-CoV-2 immune response. Our results support a role for NF90 in modulating key genes implicated in the immune response and offer insight into the immunological response to the SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Imunoprecipitação/métodos , Proteínas do Fator Nuclear 90/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , SARS-CoV-2/metabolismo , COVID-19/virologia , Células Cultivadas , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Proteínas do Fator Nuclear 90/genética , Ligação Proteica , RNA/genética , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq/métodos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA