Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transfusion ; 62(4): 770-782, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35274303

RESUMO

BACKGROUND: In hematologic and transfusion medicine research, measurement of red blood cell (RBC) in vivo kinetics must be safe and accurate. Recent reports indicate use of biotin-labeled RBC (BioRBC) to determine red cell survival (RCS) offers substantial advantages over 51 Cr and other labeling methods. Occasional induction of BioRBC antibodies has been reported. STUDY DESIGN AND METHODS: To investigate the causes and consequences of BioRBC immunization, we reexposed three previously immunized adults to BioRBC and evaluated the safety, antibody emergence, and RCS of BioRBC. RESULTS: BioRBC re-exposure caused an anamnestic increase of plasma BioRBC antibodies at 5-7 days; all were subclass IgG1 and neutralized by biotinylated albumin, thus indicating structural specificity for the biotin epitope. Concurrently, specific antibody binding to BioRBC was observed in each subject. As biotin label density increased, the proportion of BioRBC that bound increased antibody also increased; the latter was associated with proportional accelerated removal of BioRBC labeled at density 6 µg/mL. In contrast, only one of three subjects exhibited accelerated removal of BioRBC density 2 µg/mL. No adverse clinical or laboratory events were observed. Among three control subjects who did not develop BioRBC antibodies following initial BioRBC exposure, re-exposure induced neither antibody emergence nor accelerated BioRBC removal. DISCUSSION: We conclude re-exposure of immunized subjects to BioRBC can induce anamnestic antibody response that can cause an underestimation of RCS. To minimize chances of antibody induction and underestimation of RCS, we recommend an initial BioRBC exposure volume of ≤10 mL and label densities of ≤18 µg/mL.


Assuntos
Biotina , Eritrócitos , Adulto , Anticorpos/metabolismo , Biotina/química , Sobrevivência Celular , Contagem de Eritrócitos , Eritrócitos/metabolismo , Humanos
2.
Transfusion ; 60(2): 358-366, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31930533

RESUMO

BACKGROUND: The nucleic acid targeted pathogen reduction (PR) system utilizing amustaline (S-303) and glutathione (GSH) is designed to inactivate blood-borne pathogens and leukocytes in red blood cell concentrates (PR-RBCC). Inactivation is attained after amustaline intercalates and forms covalent nucleic acid adducts preventing replication, transcription, and translation. After pathogen inactivation, amustaline spontaneously hydrolyzes to S-300, the primary negatively charged reaction product; amustaline is below quantifiable levels in PR-RBCC. GSH quenches free unreacted amustaline. STUDY DESIGN AND METHODS: The genotoxic and carcinogenic potential of PR-RBCC, the reaction by-products, and S-300 were assessed in accordance with the International Conference on Harmonization (ICH) guidelines and performed in compliance with the Food and Drug Administration (FDA) good laboratory practice standards, 21 CFR Part 58. in vitro bacterial reverse mutagenicity and chromosomal aberration assays were performed with and without exogenous S9 metabolic activation, and in in vivo clastogenicity and carcinogenic assays using validated murine models. RESULTS: PR-RBCCs were not genotoxic in vitro and in vivo and were non-carcinogenic in p53+/- transgenic mice transfused over 26 weeks. Estimated safety margins for human exposure ranged from >90 to >36 fold for 2 to 5 PR-RBCCs per day, respectively. PR-RBCCs and S-300 did not induce chromosome aberration in the in vivo murine bone marrow micronucleus assay at systemically toxic doses. CONCLUSIONS: PR-RBCCs did not demonstrate genotoxicity in vitro or in vivo and were not carcinogenic in vivo. These studies support the safety of PR-RBCCs and suggest that there is no measurable genotoxic hazard associated with transfusion of PR-RBCCs.


Assuntos
Acridinas/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glutationa/farmacologia , Compostos de Mostarda Nitrogenada/farmacologia , Animais , Patógenos Transmitidos pelo Sangue/efeitos dos fármacos , Transfusão de Eritrócitos/métodos , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos , Testes para Micronúcleos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inativação de Vírus/efeitos dos fármacos
3.
Transfusion ; 57(6): 1488-1496, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28261808

RESUMO

BACKGROUND: Biotin-labeled red blood cells (BioRBCs) are used for in vivo kinetic studies. Because BioRBC dosing occasionally induces antibodies, a sensitive and specific anti-BioRBC detection assay is needed. STUDY DESIGN AND METHODS: Aims were to 1) develop a gel card assay to evaluate existing, naturally occurring and BioRBC-induced plasma antibodies, 2) compare gel card and tube agglutination detection results, and 3) test for a relationship of antibody induction and BioRBC dose. Reagent BioRBCs were prepared using sulfo-NHS biotin ranging from densities 18 (BioRBC-18) to 1458 (BioRBC-1458) µg/mL RBCs. RESULTS: Among BioRBC-exposed subjects, gel card and tube agglutination results were concordant in 21 of 22 adults and all 19 infant plasma samples. Gel card antibody detection sensitivity was more than 10-fold greater than tube agglutination. Twelve to 16 weeks after BioRBC exposure, induced anti-antibodies were detected by gel card in three of 26 adults (12%) at reagent densities BioRBC-256 or less, but in none of 41 infants. Importantly, induced anti-BioRBC antibodies were associated with higher BioRBC dose (p = 0.008); no antibodies were detected in 18 subjects who received BioRBC doses less than or equal to BioRBC-18. For noninduced BioRBC antibodies, six of 1125 naïve adults (0.3%) and none of 46 naïve infants demonstrated existing anti-BioRBC antibodies using reagent BioRBC-140 or -162. Existing anti-BioRBCs were all neutralized by biotin compounds, while induced antibodies were not. CONCLUSIONS: The gel card assay is more sensitive than the tube agglutination assay. We recommend reagent BioRBC-256 for identifying anti-BioRBCs. Use of a low total RBC biotin label dose (≤ BioRBC-18) may minimize antibody induction.


Assuntos
Anticorpos/imunologia , Biotina/química , Eritrócitos/imunologia , Adulto , Testes de Aglutinação , Bioensaio/métodos , Biotinilação , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Succinimidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA