Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 133602, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613288

RESUMO

A levitated nanomechanical oscillator under ultrahigh vacuum is highly isolated from its environment. It has been predicted that this isolation leads to very low mechanical dissipation rates. However, a gap persists between predictions and experimental data. Here, we levitate a silica nanoparticle in a linear Paul trap at room temperature, at pressures as low as 7×10^{-11} mbar. We measure a dissipation rate of 2π×69(22) nHz, corresponding to a quality factor exceeding 10^{10}, more than 2 orders of magnitude higher than previously shown. A study of the pressure dependence of the particle's damping and heating rates provides insight into the relevant dissipation mechanisms.

2.
Phys Rev Lett ; 132(25): 253602, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38996258

RESUMO

We spatially expand and subsequently contract the motional thermal state of a levitated nanoparticle using a hybrid trapping scheme. The particle's center-of-mass motion is initialized in a thermal state (temperature 155 mK) in an optical trap and then expanded by subsequent evolution in a much softer Paul trap in the absence of optical fields. We demonstrate expansion of the motional state's standard deviation in position by a factor of 24. In our system, state expansion occurs devoid of backaction from photon recoil, making this approach suitable for coherent wave function expansion.

3.
Phys Rev Lett ; 129(1): 013601, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841571

RESUMO

Interferometric methods for detecting the motion of a levitated nanoparticle provide a route to the quantum ground state, but such methods are currently limited by mode mismatch between the reference beam and the dipolar field scattered by the particle. Here we demonstrate a self-interference method to detect the particle's motion that solves this problem. A Paul trap confines a charged dielectric nanoparticle in high vacuum, and a mirror retro-reflects the scattered light. We measure the particle's motion with a sensitivity of 1.7×10^{-12} m/sqrt[Hz], corresponding to a detection efficiency of 2.1%, with a numerical aperture of 0.18. As an application of this method, we cool the particle, via feedback, to temperatures below those achieved in the same setup using a standard position measurement.

4.
Phys Rev Lett ; 126(23): 230505, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170180

RESUMO

Electric-field noise due to surfaces disturbs the motion of nearby trapped ions, compromising the fidelity of gate operations that are the basis for quantum computing algorithms. We present a method that predicts the effect of dielectric materials on the ion's motion. Such dielectrics are integral components of ion traps. Quantitative agreement is found between a model with no free parameters and measurements of a trapped ion in proximity to dielectric mirrors. We expect that this approach can be used to optimize the design of ion-trap-based quantum computers and network nodes.

5.
Opt Express ; 28(8): 11822-11839, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403685

RESUMO

We present a scheme for deterministic ion-photon qubit exchange, namely a SWAP gate, based on realistic cavity-QED systems with 171Yb+, 40Ca+ and 138Ba+ ions. The gate can also serve as a single-photon quantum memory, in which an outgoing photon heralds the successful arrival of the incoming photonic qubit. Although strong coupling, namely having the single-photon Rabi frequency be the fastest rate in the system, is often assumed essential, this gate (similarly to the Duan-Kimble C-phase gate) requires only Purcell enhancement, i.e. high single-atom cooperativity. Accordingly, it does not require small mode volume cavities, which are challenging to incorporate with ions due to the difficulty of trapping them close to dielectric surfaces. Instead, larger cavities, potentially more compatible with the trap apparatus, are sufficient, as long as their numerical aperture is high enough to maintain small mode area at the ion's position. We define the optimal parameters for the gate's operation and simulate the expected fidelities and efficiencies, demonstrating that efficient photon-ion qubit exchange, a valuable building block for scalable quantum computation, is practically attainable with current experimental capabilities.

6.
Phys Rev Lett ; 122(15): 153603, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31050508

RESUMO

We dispersively couple a single trapped ion to an optical cavity to extract information about the cavity photon-number distribution in a nondestructive way. The photon-number-dependent ac Stark shift experienced by the ion is measured via Ramsey spectroscopy. We use these measurements first to obtain the ion-cavity interaction strength. Next, we reconstruct the cavity photon-number distribution for coherent states and for a state with mixed thermal-coherent statistics, finding overlaps above 99% with the calibrated states.

7.
Phys Rev Lett ; 110(9): 090501, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496696

RESUMO

As the realization of a fully operational quantum computer remains distant, quantum simulation, whereby one quantum system is engineered to simulate another, becomes a key goal of great practical importance. Here we report on a variational method exploiting the natural physics of cavity QED architectures to simulate strongly interacting quantum fields. Our scheme is broadly applicable to any architecture involving tunable and strongly nonlinear interactions with light; as an example, we demonstrate that existing cavity devices could simulate models of strongly interacting bosons. The scheme can be extended to simulate systems of entangled multicomponent fields, beyond the reach of existing classical simulation methods.

8.
Rev Sci Instrum ; 93(7): 073201, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922316

RESUMO

We confine a microparticle in a hybrid potential created by a Paul trap and a dual-beam optical trap. We transfer the particle between the Paul trap and the optical trap at different pressures and study the influence of feedback cooling on the transfer process. This technique provides a path for experiments with optically levitated particles in ultra-high vacuum and in potentials with complex structures.

9.
Science ; 372(6539)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859004

RESUMO

Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA