Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS Biol ; 22(4): e3002607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687811

RESUMO

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.


Assuntos
Doença de Alzheimer , Encéfalo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Transcriptoma/genética , Proteômica/métodos , Masculino , Biomarcadores/metabolismo , Metabolômica/métodos , Aprendizado de Máquina , Feminino , Progressão da Doença , Idoso , Modelos Animais de Doenças , Multiômica
2.
Alzheimers Dement ; 19(5): 1785-1799, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36251323

RESUMO

INTRODUCTION: The identification of multiple genetic risk factors for Alzheimer's disease (AD) suggests that many pathways contribute to AD onset and progression. However, the metabolomic and lipidomic profiles in carriers of distinct genetic risk factors are not fully understood. The metabolome can provide a direct image of dysregulated pathways in the brain. METHODS: We interrogated metabolomic signatures in the AD brain, including carriers of pathogenic variants in APP, PSEN1, and PSEN2 (autosomal dominant AD; ADAD), APOE ɛ4, and TREM2 risk variant carriers, and sporadic AD (sAD). RESULTS: We identified 133 unique and shared metabolites associated with ADAD, TREM2, and sAD. We identified a signature of 16 metabolites significantly altered between groups and associated with AD duration. DISCUSSION: AD genetic variants show distinct metabolic perturbations. Investigation of these metabolites may provide greater insight into the etiology of AD and its impact on clinical presentation. HIGHLIGHTS: APP/PSEN1/PSEN2 and TREM2 variant carriers show distinct metabolic changes. A total of 133 metabolites were differentially abundant in AD genetic groups. ß-citrylglutamate is differentially abundant in autosomal dominant, TREM2, and sporadic AD. A 16-metabolite profile shows differences between Alzheimer's disease (AD) genetic groups. The identified metabolic profile is associated with duration of disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Encéfalo/patologia , Heterozigoto , Lipidômica , Mutação , Presenilina-1/genética
3.
Nature ; 505(7484): 550-554, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24336208

RESUMO

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-ß precursor protein (APP) and extracellular Aß42 and Aß40 (the 42- and 40-residue isoforms of the amyloid-ß peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aß42 and Aß40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Fosfolipase D/genética , Negro ou Afro-Americano/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Europa (Continente)/etnologia , Exoma/genética , Feminino , Humanos , Masculino , Fragmentos de Peptídeos/metabolismo , Fosfolipase D/deficiência , Fosfolipase D/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteólise
4.
PLoS Genet ; 13(11): e1007045, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29091718

RESUMO

Alzheimer disease (AD), Frontotemporal lobar degeneration (FTD), Amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD) have a certain degree of clinical, pathological and molecular overlap. Previous studies indicate that causative mutations in AD and FTD/ALS genes can be found in clinical familial AD. We examined the presence of causative and low frequency coding variants in the AD, FTD, ALS and PD Mendelian genes, in over 450 families with clinical history of AD and over 11,710 sporadic cases and cognitive normal participants from North America. Known pathogenic mutations were found in 1.05% of the sporadic cases, in 0.69% of the cognitively normal participants and in 4.22% of the families. A trend towards enrichment, albeit non-significant, was observed for most AD, FTD and PD genes. Only PSEN1 and PINK1 showed consistent association with AD cases when we used ExAC as the control population. These results suggest that current study designs may contain heterogeneity and contamination of the control population, and that current statistical methods for the discovery of novel genes with real pathogenic variants in complex late onset diseases may be inadequate or underpowered to identify genes carrying pathogenic mutations.


Assuntos
Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Degeneração Lobar Frontotemporal/genética , Mutação , Doença de Parkinson/genética , Presenilina-1/genética , Proteínas Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Linhagem
6.
Hum Mol Genet ; 23(21): 5838-46, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24899047

RESUMO

The triggering receptor expressed on myeloid 2 (TREM2) is an immune phagocytic receptor expressed on brain microglia known to trigger phagocytosis and regulate the inflammatory response. Homozygous mutations in TREM2 cause Nasu-Hakola disease, a rare recessive form of dementia. A heterozygous TREM2 variant, p.R47H, was recently shown to increase Alzheimer''s disease (AD) risk. We hypothesized that if TREM2 is truly an AD risk gene, there would be additional rare variants in TREM2 that substantially affect AD risk. To test this hypothesis, we performed pooled sequencing of TREM2 coding regions in 2082 AD cases and 1648 cognitively normal elderly controls of European American descent. We identified 16 non-synonymous variants, six of which were not identified in previous AD studies. Two variants, p.R47H [P = 9.17 × 10(-4), odds ratio (OR) = 2.63 (1.44-4.81)] and p.R62H [P = 2.36 × 10(-4), OR = 2.36 (1.47-3.80)] were significantly associated with disease risk in single-variant analyses. Gene-based tests demonstrate variants in TREM2 are genome-wide significantly associated with AD [PSKAT-O = 5.37 × 10(-7); OR = 2.55 (1.80-3.67)]. The association of TREM2 variants with AD is still highly significant after excluding p.R47H [PSKAT-O = 7.72 × 10(-5); OR = 2.47 (1.62-3.87)], indicating that additional TREM2 variants affect AD risk. Genotyping in available family members of probands suggested that p.R47H (P = 4.65 × 10(-2)) and p.R62H (P = 6.87 × 10(-3)) were more frequently seen in AD cases versus controls within these families. Gel electrophoresis analysis confirms that at least three TREM2 transcripts are expressed in human brains, including one encoding a soluble form of TREM2.


Assuntos
Doença de Alzheimer/genética , Variação Genética , Glicoproteínas de Membrana/genética , Fases de Leitura Aberta , Receptores Imunológicos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Doença de Alzheimer/diagnóstico , Sequência de Aminoácidos , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Glicoproteínas de Membrana/química , Pessoa de Meia-Idade , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Receptores Imunológicos/química , Risco , Alinhamento de Sequência
8.
iScience ; 26(12): 108534, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38089583

RESUMO

There is a need for affordable, scalable, and specific blood-based biomarkers for Alzheimer's disease that can be applied to a population level. We have developed and validated disease-specific cell-free transcriptomic blood-based biomarkers composed by a scalable number of transcripts that capture AD pathobiology even in the presymptomatic stages of the disease. Accuracies are in the range of the current CSF and plasma biomarkers, and specificities are high against other neurodegenerative diseases.

9.
medRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798226

RESUMO

Genome-wide association studies (GWAS) have identified many modifiers of Alzheimer disease (AD) risk enriched in microglia. Two of these modifiers are common variants in the MS4A locus (rs1582763: protective and rs6591561: risk) and serve as major regulators of CSF sTREM2 levels. To understand their functional impact on AD, we used single nucleus transcriptomics to profile brains from carriers of these variants. We discovered a "chemokine" microglial subpopulation that is altered in MS4A variant carriers and for which MS4A4A is the major regulator. The protective variant increases MS4A4A expression and shifts the chemokine microglia subpopulation to an interferon state, while the risk variant suppresses MS4A4A expression and reduces this subpopulation of microglia. Our findings provide a mechanistic explanation for the AD variants in the MS4A locus. Further, they pave the way for future mechanistic studies of AD variants and potential therapeutic strategies for enhancing microglia resilience in AD pathogenesis.

10.
iScience ; 26(4): 106408, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36974157

RESUMO

Identification of proteins dysregulated by COVID-19 infection is critically important for better understanding of its pathophysiology, building prognostic models, and identifying new targets. Plasma proteomic profiling of 4,301 proteins was performed in two independent datasets and tested for the association for three COVID-19 outcomes (infection, ventilation, and death). We identified 1,449 proteins consistently associated in both datasets with any of these three outcomes. We subsequently created highly accurate models that distinctively predict infection, ventilation, and death. These proteins were enriched in specific biological processes including cytokine signaling, Alzheimer's disease, and coronary artery disease. Mendelian randomization and gene network analyses identified eight causal proteins and 141 highly connected hub proteins including 35 with known drug targets. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes, reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.

11.
Sci Transl Med ; 15(703): eabq5923, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406134

RESUMO

Proteomic studies for Alzheimer's disease (AD) are instrumental in identifying AD pathways but often focus on single tissues and sporadic AD cases. Here, we present a proteomic study analyzing 1305 proteins in brain tissue, cerebrospinal fluid (CSF), and plasma from patients with sporadic AD, TREM2 risk variant carriers, patients with autosomal dominant AD (ADAD), and healthy individuals. We identified 8 brain, 40 CSF, and 9 plasma proteins that were altered in individuals with sporadic AD, and we replicated these findings in several external datasets. We identified a proteomic signature that differentiated TREM2 variant carriers from both individuals with sporadic AD and healthy individuals. The proteins associated with sporadic AD were also altered in patients with ADAD, but with a greater effect size. Brain-derived proteins associated with ADAD were also replicated in additional CSF samples. Enrichment analyses highlighted several pathways, including those implicated in AD (calcineurin and Apo E), Parkinson's disease (α-synuclein and LRRK2), and innate immune responses (SHC1, ERK-1, and SPP1). Our findings suggest that combined proteomics across brain tissue, CSF, and plasma can be used to identify markers for sporadic and genetically defined AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteômica , Encéfalo/metabolismo , Imunidade Inata , Heterozigoto , Biomarcadores/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo
12.
Acta Neuropathol Commun ; 10(1): 29, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246267

RESUMO

BACKGROUND: Autosomal-dominant Alzheimer's disease (ADAD) is caused by pathogenic mutations in APP, PSEN1, and PSEN2, which usually lead to an early age at onset (< 65). Circular RNAs are a family of non-coding RNAs highly expressed in the nervous system and especially in synapses. We aimed to investigate differences in brain gene expression of linear and circular transcripts from the three ADAD genes in controls, sporadic AD, and ADAD. METHODS: We obtained and sequenced RNA from brain cortex using standard protocols. Linear counts were obtained using the TOPMed pipeline; circular counts, using python package DCC. After stringent quality control (QC), we obtained the counts for PSEN1, PSEN2 and APP genes. Only circPSEN1 passed QC. We used DESeq2 to compare the counts across groups, correcting for biological and technical variables. Finally, we performed in-silico functional analyses using the Circular RNA interactome website and DIANA mirPath software. RESULTS: Our results show significant differences in gene counts of circPSEN1 in ADAD individuals, when compared to sporadic AD and controls (ADAD = 21, AD = 253, Controls = 23-ADADvsCO: log2FC = 0.794, p = 1.63 × 10-04, ADADvsAD: log2FC = 0.602, p = 8.22 × 10-04). The high gene counts are contributed by two circPSEN1 species (hsa_circ_0008521 and hsa_circ_0003848). No significant differences were observed in linear PSEN1 gene expression between cases and controls, indicating that this finding is specific to the circular forms. In addition, the high circPSEN1 levels do not seem to be specific to PSEN1 mutation carriers; the counts are also elevated in APP and PSEN2 mutation carriers. In-silico functional analyses suggest that circPSEN1 is involved in several pathways such as axon guidance (p = 3.39 × 10-07), hippo signaling pathway (p = 7.38 × 10-07), lysine degradation (p = 2.48 × 10-05) or Wnt signaling pathway (p = 5.58 × 10-04) among other KEGG pathways. Additionally, circPSEN1 counts were able to discriminate ADAD from sporadic AD and controls with an AUC above 0.70. CONCLUSIONS: Our findings show the differential expression of circPSEN1 is increased in ADAD. Given the biological function previously ascribed to circular RNAs and the results of our in-silico analyses, we hypothesize that this finding might be related to neuroinflammatory events that lead or that are caused by the accumulation of amyloid-beta.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Mutação , Presenilina-1/genética , Presenilina-1/metabolismo , RNA Circular/genética
13.
medRxiv ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35923315

RESUMO

Identification of the plasma proteomic changes of Coronavirus disease 2019 (COVID-19) is essential to understanding the pathophysiology of the disease and developing predictive models and novel therapeutics. We performed plasma deep proteomic profiling from 332 COVID-19 patients and 150 controls and pursued replication in an independent cohort (297 cases and 76 controls) to find potential biomarkers and causal proteins for three COVID-19 outcomes (infection, ventilation, and death). We identified and replicated 1,449 proteins associated with any of the three outcomes (841 for infection, 833 for ventilation, and 253 for death) that can be query on a web portal ( https://covid.proteomics.wustl.edu/ ). Using those proteins and machine learning approached we created and validated specific prediction models for ventilation (AUC>0.91), death (AUC>0.95) and either outcome (AUC>0.80). These proteins were also enriched in specific biological processes, including immune and cytokine signaling (FDR ≤ 3.72×10 -14 ), Alzheimer's disease (FDR ≤ 5.46×10 -10 ) and coronary artery disease (FDR ≤ 4.64×10 -2 ). Mendelian randomization using pQTL as instrumental variants nominated BCAT2 and GOLM1 as a causal proteins for COVID-19. Causal gene network analyses identified 141 highly connected key proteins, of which 35 have known drug targets with FDA-approved compounds. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes (ventilation and death), reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.

15.
J Alzheimers Dis ; 77(4): 1469-1482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894242

RESUMO

BACKGROUND: Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, p.R62H) have been associated with late onset Alzheimer's disease (LOAD) risk in Caucasians. After the initial report, several studies have found positive results in cohorts of different ethnic background and with different phenotype. OBJECTIVE: In this study, we aim to evaluate the association of rare coding variants in PLCG2, ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease. METHODS: We used a European American cohort to assess the association of the variants prior onset (using CSF Aß42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after onset (measured as rate of memory decline). RESULTS: We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R variants were also statistically associated with increase of amyloid imaging and AD progression, respectively. We did not observe any association of ABI3 p.S209F with any of the other AD endophenotypes. CONCLUSION: The results of this study highlight the importance of including biomarkers and alternative phenotypes to better understand the role of novel candidate genes with the disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Variação Genética/genética , Glicoproteínas de Membrana/genética , Fenótipo , Fosfolipase C gama/genética , Receptores Imunológicos/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Estudos de Coortes , Bases de Dados Genéticas/tendências , Feminino , Humanos , Masculino
16.
Ann Neurol ; 63(4): 535-8, 2008 04.
Artigo em Inglês | MEDLINE | ID: mdl-18288693

RESUMO

To identify novel causes of familial neurodegenerative diseases, we extended our previous studies of TAR DNA-binding protein 43 (TDP-43) proteinopathies to investigate TDP-43 as a candidate gene in familial cases of motor neuron disease. Sequencing of the TDP-43 gene led to the identification of a novel missense mutation, Ala-315-Thr, which segregates with all affected members of an autosomal dominant motor neuron disease family. The mutation was not found in 1,505 healthy control subjects. The discovery of a missense mutation in TDP-43 in a family with dominantly inherited motor neuron disease provides evidence of a direct link between altered TDP-43 function and neurodegeneration.


Assuntos
Substituição de Aminoácidos/genética , Proteínas de Ligação a DNA/genética , Doença dos Neurônios Motores/genética , Mutação de Sentido Incorreto/genética , Idoso , Idoso de 80 Anos ou mais , Alanina/genética , Sequência de Aminoácidos , Análise Mutacional de DNA , Feminino , Genes Dominantes , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Linhagem , Treonina/genética
17.
Nat Neurosci ; 22(11): 1903-1912, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591557

RESUMO

Parietal cortex RNA-sequencing (RNA-seq) data were generated from individuals with and without Alzheimer disease (AD; ncontrol = 13; nAD = 83) from the Knight Alzheimer Disease Research Center (Knight ADRC). Using this and an independent (Mount Sinai Brain Bank (MSBB)) AD RNA-seq dataset, cortical circular RNA (circRNA) expression was quantified in the context of AD. Significant associations were identified between circRNA expression and AD diagnosis, clinical dementia severity and neuropathological severity. It was demonstrated that most circRNA-AD associations are independent of changes in cognate linear messenger RNA expression or estimated brain cell-type proportions. Evidence was provided for circRNA expression changes occurring early in presymptomatic AD and in autosomal dominant AD. It was also observed that AD-associated circRNAs co-expressed with known AD genes. Finally, potential microRNA-binding sites were identified in AD-associated circRNAs for miRNAs predicted to target AD genes. Together, these results highlight the importance of analyzing non-linear RNAs and support future studies exploring the potential roles of circRNAs in AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Atlas como Assunto , Perfilação da Expressão Gênica , Lobo Parietal/metabolismo , RNA Circular/biossíntese , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Estudos de Casos e Controles , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/biossíntese , Análise de Sequência de RNA , Índice de Gravidade de Doença
18.
Stem Cell Reports ; 13(5): 939-955, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31631020

RESUMO

Primary tauopathies are characterized neuropathologically by inclusions containing abnormal forms of the microtubule-associated protein tau (MAPT) and clinically by diverse neuropsychiatric, cognitive, and motor impairments. Autosomal dominant mutations in the MAPT gene cause heterogeneous forms of frontotemporal lobar degeneration with tauopathy (FTLD-Tau). Common and rare variants in the MAPT gene increase the risk for sporadic FTLD-Tau, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We generated a collection of fibroblasts from 140 MAPT mutation/risk variant carriers, PSP, CBD, and cognitively normal controls; 31 induced pluripotent stem cell (iPSC) lines from MAPT mutation carriers, non-carrier family members, and autopsy-confirmed PSP patients; 33 genome engineered iPSCs that were corrected or mutagenized; and forebrain neural progenitor cells (NPCs). Here, we present a resource of fibroblasts, iPSCs, and NPCs with comprehensive clinical histories that can be accessed by the scientific community for disease modeling and development of novel therapeutics for tauopathies.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Tauopatias/patologia , Linhagem Celular , Fibroblastos/metabolismo , Fibroblastos/patologia , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese , Neurônios/metabolismo , Neurônios/patologia , Tauopatias/genética , Proteínas tau/genética
19.
Hum Mutat ; 29(4): 512-21, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18183624

RESUMO

Frontotemporal dementia (FTD) is a clinical term encompassing dementia characterized by the presence of two major phenotypes: 1) behavioral and personality disorder, and 2) language disorder, which includes primary progressive aphasia and semantic dementia. Recently, the gene for familial frontotemporal lobar degeneration (FTLD) with ubiquitin-positive, tau-negative inclusions (FTLD-U) linked to chromosome 17 was cloned. In the present study, 62 unrelated patients from the Washington University Alzheimer's Disease Research Center and the Midwest Consortium for FTD with clinically diagnosed FTD and/or neuropathologically characterized cases of FTLD-U with or without motor neuron disease (MND) were screened for mutations in the progranulin gene (GRN; also PGRN). We discovered two pathogenic mutations in four families: 1) a single-base substitution within the 3' splice acceptor site of intron 6/exon 7 (g.5913A>G [IVS6-2A>G]) causing skipping of exon 7 and premature termination of the coding sequence (PTC); and 2) a missense mutation in exon 1 (g.4068C>A) introducing a charged amino acid in the hydrophobic core of the signal peptide at residue 9 (p.A9D). Functional analysis in mutation carriers for the splice acceptor site mutation revealed a 50% decrease in GRN mRNA and protein levels, supporting haploinsufficiency. In contrast, there was no significant difference in the total GRN mRNA between cases and controls carrying the p.A9D mutation. Further, subcellular fractionation and confocal microscopy indicate that although the mutant protein is expressed, it is not secreted, and appears to be trapped within an intracellular compartment, possibly resulting in a functional haploinsufficiency.


Assuntos
Demência/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Idade de Início , Idoso , Sequência de Bases , Encéfalo/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Primers do DNA/genética , Demência/líquido cefalorraquidiano , Demência/metabolismo , Feminino , Efeito Fundador , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/líquido cefalorraquidiano , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Íntrons , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Progranulinas , Sítios de Splice de RNA , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Transfecção
20.
Front Neurosci ; 12: 209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670507

RESUMO

Gene-based tests to study the combined effect of rare variants on a particular phenotype have been widely developed for case-control studies, but their evolution and adaptation for family-based studies, especially studies of complex incomplete families, has been slower. In this study, we have performed a practical examination of all the latest gene-based methods available for family-based study designs using both simulated and real datasets. We examined the performance of several collapsing, variance-component, and transmission disequilibrium tests across eight different software packages and 22 models utilizing a cohort of 285 families (N = 1,235) with late-onset Alzheimer disease (LOAD). After a thorough examination of each of these tests, we propose a methodological approach to identify, with high confidence, genes associated with the tested phenotype and we provide recommendations to select the best software and model for family-based gene-based analyses. Additionally, in our dataset, we identified PTK2B, a GWAS candidate gene for sporadic AD, along with six novel genes (CHRD, CLCN2, HDLBP, CPAMD8, NLRP9, and MAS1L) as candidate genes for familial LOAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA