Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 18(11): 2178-2190, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467031

RESUMO

Post-translational modification confers diverse functional properties to immune system proteins. The composition of serum proteins such as immunoglobulin G (IgG) strongly associates with disease including forms lacking a fucose modification of the crystallizable fragment (Fc) asparagine(N)-linked glycan that show increased effector function, however, virtually nothing is known about the composition of cell surface receptors or their bound ligands in situ because of low abundance in the circulating blood. We isolated primary NK cells from apheresis filters following plasma or platelet donation to characterize the compositional variability of Fc γ receptor IIIa/CD16a and its bound ligand, IgG1. CD16a N162-glycans showed the largest differences between donors; one donor displayed only oligomannose-type N-glycans at N162 that correlate with high affinity IgG1 Fc binding whereas the other donors displayed a high degree of compositional variability at this site. Hybrid-type N-glycans with intermediate processing dominated at N45 and highly modified, complex-type N-glycans decorated N38 and N74 from all donors. Analysis of the IgG1 ligand bound to NK cell CD16a revealed a sharp decrease in antibody fucosylation (43.2 ± 11.0%) versus serum from the same donors (89.7 ± 3.9%). Thus, NK cells express CD16a with unique modification patterns and preferentially bind IgG1 without the Fc fucose modification at the cell surface.


Assuntos
Membrana Celular/metabolismo , Imunoglobulina G/metabolismo , Células Matadoras Naturais/metabolismo , Polissacarídeos/metabolismo , Receptores de IgG/metabolismo , Adulto , Afinidade de Anticorpos , Membrana Celular/imunologia , Feminino , Glicosilação , Humanos , Imunoglobulina G/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ligantes , Masculino , Pessoa de Meia-Idade , Polissacarídeos/imunologia , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Receptores de IgG/imunologia , Adulto Jovem
2.
ACS Synth Biol ; 13(8): 2347-2356, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39109930

RESUMO

Aerobic methanotrophs, or methane-consuming microbes, are strongly dependent on copper for their activity. To satisfy this requirement, some methanotrophs produce a copper-binding compound, or chalkophore, called methanobactin (MB). In addition to playing a critical role in methanotrophy, MB has also been shown to have great promise in treating copper-related human diseases, perhaps most significantly Wilson's disease. In this congenital disorder, copper builds up in the liver, leading to irreversible damage and, in severe cases, complete organ failure. Remarkably, MB has been shown to reverse such damage in animal models, and there is a great deal of interest in upscaling MB production for expanded clinical trials. Such efforts, however, are currently hampered as (1) the natural rate of MB production rate by methanotrophs is low, (2) the use of methane as a substrate for MB production is problematic as it is explosive in air, (3) there is limited understanding of the entire pathway of MB biosynthesis, and (4) the most attractive form of MB is produced by Methylocystis sp. strain SB2, a methanotroph that is genetically intractable. Herein, we report heterologous biosynthesis of MB from Methylocystis sp. strain SB2 in an alternative methanotroph, Methylosinus trichosporium OB3b, not only on methane but also on methanol. As a result, the strategy described herein not only facilitates enhanced MB production but also provides opportunities to construct various mutants to delineate the entire pathway of MB biosynthesis, as well as the creation of modified forms of MB that may have enhanced therapeutic value.


Assuntos
Imidazóis , Methylocystaceae , Methylosinus trichosporium , Oligopeptídeos , Methylosinus trichosporium/metabolismo , Methylosinus trichosporium/genética , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Methylocystaceae/metabolismo , Methylocystaceae/genética , Metano/metabolismo , Engenharia Metabólica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA