Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(1): e1005361, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26735307

RESUMO

Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called "immune priming" or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems.


Assuntos
Biomphalaria/imunologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Memória Imunológica/imunologia , Animais , Biomphalaria/parasitologia , Vetores de Doenças , Imunidade Inata/imunologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/veterinária , Transfecção
2.
Front Immunol ; 9: 1206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899746

RESUMO

Insect thioester-containing protein (iTEP) is the most recently defined group among the thioester-containing protein (TEP) superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP) was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins) and schistosome parasite mucins (SmPoMuc). To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first characterization of a snail TEP. Our study also reveals that BgTEP may display an unexpected functional dual role. In addition to its previously characterized anti-protease activity, we demonstrate that BgTEP can bind to the intruder surface membrane, which supports a likely opsonin role.


Assuntos
Biomphalaria/fisiologia , Imunidade Inata , Proteínas de Insetos/metabolismo , Inibidores de Proteases/metabolismo , Animais , Biomphalaria/classificação , Expressão Gênica , Perfilação da Expressão Gênica , Hemócitos/imunologia , Hemócitos/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Insetos/química , Proteínas de Insetos/genética , Modelos Moleculares , Fagocitose/genética , Fagocitose/imunologia , Filogenia , Inibidores de Proteases/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
3.
J Extracell Vesicles ; 4: 28665, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26443722

RESUMO

BACKGROUND: Penetration of skin, migration through tissues and establishment of long-lived intravascular partners require Schistosoma parasites to successfully manipulate definitive host defences. While previous studies of larval schistosomula have postulated a function for excreted/secreted (E/S) products in initiating these host-modulatory events, the role of extracellular vesicles (EVs) has yet to be considered. Here, using preparatory ultracentrifugation as well as methodologies to globally analyse both proteins and small non-coding RNAs (sncRNAs), we conducted the first characterization of Schistosoma mansoni schistosomula EVs and their potential host-regulatory cargos. RESULTS: Transmission electron microscopy analysis of EVs isolated from schistosomula in vitro cultures revealed the presence of numerous, 30-100 nm sized exosome-like vesicles. Proteomic analysis of these vesicles revealed a core set of 109 proteins, including homologs to those previously found enriched in other eukaryotic EVs, as well as hypothetical proteins of high abundance and currently unknown function. Characterization of E/S sncRNAs found within and outside of schistosomula EVs additionally identified the presence of potential gene-regulatory miRNAs (35 known and 170 potentially novel miRNAs) and tRNA-derived small RNAs (tsRNAs; nineteen 5' tsRNAs and fourteen 3' tsRNAs). CONCLUSIONS: The identification of S. mansoni EVs and the combinatorial protein/sncRNA characterization of their cargo signifies that an important new participant in the complex biology underpinning schistosome/host interactions has now been discovered. Further work defining the role of these schistosomula EVs and the function/stability of intra- and extra-vesicular sncRNA components presents tremendous opportunities for developing novel schistosomiasis diagnostics or interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA