Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(34): 20397-20403, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788358

RESUMO

Organic frameworks (OFs) offer a novel strategy for assembling organic semiconductors into robust networks that facilitate transport, especially the covalent organic frameworks (COFs). However, poor electrical conductivity through covalent bonds and insolubility of COFs limit their practical applications in organic electronics. It is known that the two-dimensional intralayer π∙∙∙π transfer dominates transport in organic semiconductors. However, because of extremely labile inherent features of noncovalent π∙∙∙π interaction, direct construction of robust frameworks via noncovalent π∙∙∙π interaction is a difficult task. Toward this goal, we report a robust noncovalent π∙∙∙π interaction-stacked organic framework, namely πOF, consisting of a permanent three-dimensional porous structure that is held together by pure intralayer noncovalent π∙∙∙π interactions. The elaborate porous structure, with a 1.69-nm supramaximal micropore, is composed of fully conjugated rigid aromatic tetragonal-disphenoid-shaped molecules with four identical platforms. πOF shows excellent thermostability and high recyclability and exhibits self-healing properties by which the parent porosity is recovered upon solvent annealing at room temperature. Taking advantage of the long-range π∙∙∙π interaction, we demonstrate remarkable transport properties of πOF in an organic-field-effect transistor, and the mobility displays relative superiority over the traditional COFs. These promising results position πOF in a direction toward porous and yet conductive materials for high-performance organic electronics.

2.
Small ; 18(8): e2103887, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34873843

RESUMO

Superior bandgap tunability enables solution-processed halide perovskite a promising candidate for multi-junction photovoltaics (PVs). Particularly, optically coupling wide-gap perovskite by stacking with commercially available PVs such as silicon and CIGS (also known as 4-terminal tandem) simplifies the technology transfer process, and further advances the commercialization potential of perovskite technology. However, compared with matured PV materials and the phase-pure FAPbI3 , wide-gap perovskite still suffers from huge voltage deficits. Here, the authors take advantage of the synergetic effect behind a sequential fluoride and organic ammonium salt surface passivation strategy to control non-radiative energy losses, and obtained a 17.7% efficiency in infrared-transparent wide-gap perovskite solar cells (21.1% for opaque device), and achieved efficiencies of over 25% when stacked with commercial Si and CIGS products with original PCEs of 18-20% under a 4-terminal working condition.

3.
J Am Chem Soc ; 142(49): 20717-20724, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226803

RESUMO

Reaction pathways operative when pyridinophane N-oxides are photoirradiated have been studied using time course analyses and careful isolation of photolabile intermediates with support from DFT calculations. Based on the data and the isolation of two previously unknown heterocyclophanes, we outline a unified mechanistic scheme that explains competing processes under varying photochemical conditions.


Assuntos
Compostos Aza/química , Hidrocarbonetos Aromáticos com Pontes/química , Raios Ultravioleta , Aziridinas/química , Teoria da Densidade Funcional , Conformação Molecular , Óxidos/química , Pirróis/síntese química , Pirróis/química
4.
J Am Chem Soc ; 142(4): 1673-1679, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31922407

RESUMO

We report the genome-guided discovery of sungeidines, a class of microbial secondary metabolites with unique structural features. Despite evolutionary relationships with dynemicin-type enediynes, the sungeidines are produced by a biosynthetic gene cluster (BGC) that exhibits distinct differences from known enediyne BGCs. Our studies suggest that the sungeidines are assembled from two octaketide chains that are processed differently than those of the dynemicin-type enediynes. The biosynthesis also involves a unique activating sulfotransferase that promotes a dehydration reaction. The loss of genes, including a putative epoxidase gene, is likely to be the main cause of the divergence of the sungeidine pathway from other canonical enediyne pathways. The findings disclose the surprising evolvability of enediyne pathways and set the stage for characterizing the intriguing enzymatic steps in sungeidine biosynthesis.


Assuntos
Vias Biossintéticas , Enedi-Inos/metabolismo , Antibióticos Antineoplásicos/metabolismo , Família Multigênica
5.
J Nat Prod ; 83(7): 2129-2144, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32633512

RESUMO

A phytochemical investigation of the MeOH extract of the leaves and twigs of Amentotaxus argotaenia, a relict vulnerable coniferous species endemic to China, led to the isolation and characterization of 35 diterpenoids/norditerpenoids. Twenty of these are new, including 11 ent-kaurane-type (amentotaxins C-M, 1-11, respectively), three icetexane-type [= 9(10→20)abeo-abietane-type (amentotaxins N-P, 12-14, respectively)], four ent-labdane-type (amentotaxins Q-T, 15-18, respectively), and two isopimarane-type [amentotaxins U (19) and V (20)] compounds. Their structures were elucidated on the basis of spectroscopic data, single-crystal X-ray diffraction, the modified Mosher's method, and electronic circular dichroism data analyses. Compounds 1-9 are rare 18-nor-ent-kaurane-type diterpenoids featuring a 4ß,19-epoxy ring. All the isolates were evaluated for their cytotoxic effects against a small panel of cultured human cancer cell lines (HeLa, A-549, MDA-MB-231, SKOV3, Huh-7, and HCT-116), and some of them exhibited cytotoxicities with IC50 values ranging from 1.5 to 10.0 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Folhas de Planta/química , Taxaceae/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Análise Espectral/métodos
6.
J Am Chem Soc ; 141(35): 13948-13953, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31403287

RESUMO

Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their "soft" nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 µm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.

7.
Nano Lett ; 18(12): 7977-7984, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30475629

RESUMO

The application of tandem structure that integrates multiple subcells into one device is a promising way to realize high efficiency organic solar cells. However, current-matching among different subcells remains as the main challenge for organic tandem photovoltaics. Here, we provide a facile approach to achieve a good current matching via engineering the chemical composition of non-fullerene ternary blend subcells. For the front subcell, a ternary blend of PDBT-T1:TPH-Se:ITIC is selected due to its good thermal stability. The amorphous nature of TPH-Se can sufficiently suppress the unfavorable phase separation of blends during the heat treatment, enabling a sintering in the fabrication of high quality interconnecting layer. A double-junction tandem device is fabricated with a rear subcell consisting of PBDB-T:ITIC. After the optimization of the chemical composition of the front subcell, the power conversion efficiency (PCE) of double-junction tandem device increased from 10.6% using PDBT-T1:TPH-Se binary front subcell to 11.5% using PDBT-T1:TPH-Se:ITIC (1:0.9:0.1) ternary front subcell due to better current matching. In order to further enhance the light absorption in the near-infrared region, a third junction PBDTTT-EFT:IEICO-4F is introduced. The champion cell of triple-junction non-fullerene tandem solar cell achieves a PCE of 13.0% with a high open circuit voltage of 2.52 V.

8.
Chemistry ; 20(24): 7334-44, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24806551

RESUMO

Suppression of the dimerization of the viologen radical cation by cucurbit[7]uril (CB7) in water is a well-known phenomenon. Herein, two counter-examples are presented. Two viologen-containing thread molecules were designed, synthesized, and thoroughly characterized by (1)H DOSY NMR spectrometry, UV/Vis absorption spectrophotometry, square-wave voltammetry, and chronocoulometry: BV(4+), which contains two viologen subunits, and HV(12+), which contains six. In both threads, the viologen subunits are covalently bonded to a hexavalent phosphazene core. The corresponding [3]- and [7]pseudorotaxanes that form on complexation with CB7, that is, BV(4+)⊂(CB7)2 and HV(12+)⊂(CB7)6, were also analyzed. The properties of two monomeric control threads, namely, methyl viologen (MV(2+)) and benzyl methyl viologen (BMV(2+)), as well as their [2]pseudorotaxane complexes with CB7 (MV(2+)⊂CB7 and BMV(2+)⊂CB7) were also investigated. As expected, the control pseudorotaxanes remained intact after one-electron reduction of their viologen-recognition stations. In contrast, analogous reduction of BV(4+)⊂(CB7)2 and HV(12+)⊂(CB7)6 led to host-guest decomplexation and release of the free threads BV(2(·+)) and HV(6(·+)), respectively. (1)H DOSY NMR spectrometric and chronocoulometric measurements showed that BV(2(·+)) and HV(6(·+)) have larger diffusion coefficients than the corresponding [3]- and [7]pseudorotaxanes, and UV/Vis absorption studies provided evidence for intramolecular radical-cation dimerization. These results demonstrate that radical-cation dimerization, a relatively weak interaction, can be used as a driving force in novel molecular switches.


Assuntos
Rotaxanos/síntese química , Cátions , Dimerização , Modelos Moleculares , Estrutura Molecular , Rotaxanos/química
9.
Sci Adv ; 7(46): eabj1799, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757790

RESUMO

Wide-bandgap (WBG) mixed-halide perovskites as the front cell absorber are accomplishing perovskite-based tandem solar cells with over 29% power conversion efficiency. However, their large voltage deficits limit their ultimate performance. Only a handful of studies probe the fundamental mechanisms underlying the voltage deficits, which remain an unsolved challenge in the field. In this study, we investigate the formation dynamics and defect physics of WBG mixed-halide perovskites in contrast with their corresponding triiodide-based perovskites. Our results show that the inclusion of bromide introduced a halide homogenization process that occurs during the perovskite growth stage from an initial bromide-rich phase toward the final target stoichiometry. We further elucidated a physical model that correlates the role of bromide with the formation dynamics, defect physics, and eventual optoelectronic properties of the film. This work provides a fundamental and unique perspective toward understanding the performance-limiting factors affecting WBG mixed-halide perovskites.

10.
Adv Mater ; 33(12): e2006120, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33586281

RESUMO

The synthesis of a new molecule, SFIC-Cl, is reported, which features enhanced π-electron delocalization by spiroconjugation and narrowed bandgap by chlorination. SFIC-Cl is integrated into a single-crystal transistor (OFET) and organic light-emitting diode (OLED). The material demonstrates remarkable transport abilities across various solution-processed OFETs and retains efficient radiance in a near-infrared OLED emitting light at 700 nm. Furthermore, the intermolecular multi-dimensional connection of SFIC-Cl enables the fabrication of a single-component large-area (2 × 2 cm2 ) near-infrared OLED by spin-coating. The SFIC-Cl-acceptor-based solar cell shows excellent power conversion efficiency of 10.16% resulting from the broadened and strong absorption and well-matched energy levels. The study demonstrates that chlorinated spiroconjugated fused systems offer a novel direction toward the development of high-performance organic semiconductor materials for hybrid organic electronic devices.

12.
Nat Commun ; 11(1): 5514, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139740

RESUMO

Conventional epitaxy of semiconductor films requires a compatible single crystalline substrate and precisely controlled growth conditions, which limit the price competitiveness and versatility of the process. We demonstrate substrate-tolerant nano-heteroepitaxy (NHE) of high-quality formamidinium-lead-tri-iodide (FAPbI3) perovskite films. The layered perovskite templates the solid-state phase conversion of FAPbI3 from its hexagonal non-perovskite phase to the cubic perovskite polymorph, where the growth kinetics are controlled by a synergistic effect between strain and entropy. The slow heteroepitaxial crystal growth enlarged the perovskite crystals by 10-fold with a reduced defect density and strong preferred orientation. This NHE is readily applicable to various substrates used for devices. The proof-of-concept solar cell and light-emitting diode devices based on the NHE-FAPbI3 showed efficiencies and stabilities superior to those of devices fabricated without NHE.

13.
Adv Mater ; 32(11): e1906995, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32017283

RESUMO

The operational instability of perovskite solar cells (PSCs) is known to mainly originate from the migration of ionic species (or charged defects) under a potential gradient. Compositional engineering of the "A" site cation of the ABX3 perovskite structure has been shown to be an effective route to improve the stability of PSCs. Here, the effect of size-mismatch-induced lattice distortions on the ion migration energetics and operational stability of PSCs is investigated. It is observed that the size mismatch of the mixed "A" site composition films and devices leads to a steric effect to impede the migration pathways of ions to increase the activation energy of ion migration, which is demonstrated through multiple theoretical and experimental evidence. Consequently, the mixed composition devices exhibit significantly improved thermal stability under continuous heating at 85 °C and operational stability under continuous 1 sun illumination, with an extrapolated lifetime of 2011 h, compared to the 222 h of the reference device.

14.
Adv Mater ; 31(37): e1900111, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31343086

RESUMO

Halide perovskite colloidal quantum dots (CQDs) have recently emerged as a promising candidate for CQD photovoltaics due to their superior optoelectronic properties to conventional chalcogenides CQDs. However, the low charge separation efficiency due to quantum confinement still remains a critical obstacle toward higher-performance perovskite CQD photovoltaics. Available strategies employed in the conventional CQD devices to enhance the carrier separation, such as the design of type-Ⅱ core-shell structure and versatile surface modification to tune the electronic properties, are still not applicable to the perovskite CQD system owing to the difficulty in modulating surface ligands and structural integrity. Herein, a facile strategy that takes advantage of conjugated small molecules that provide an additional driving force for effective charge separation in perovskite CQD solar cells is developed. The resulting perovskite CQD solar cell shows a power conversion efficiency approaching 13% with an open-circuit voltage of 1.10 V, short-circuit current density of 15.4 mA cm-2 , and fill factor of 74.8%, demonstrating the strong potential of this strategy toward achieving high-performance perovskite CQD solar cells.

15.
Science ; 366(6472): 1509-1513, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857483

RESUMO

Surface trap-mediated nonradiative charge recombination is a major limit to achieving high-efficiency metal-halide perovskite photovoltaics. The ionic character of perovskite lattice has enabled molecular defect passivation approaches through interaction between functional groups and defects. However, a lack of in-depth understanding of how the molecular configuration influences the passivation effectiveness is a challenge to rational molecule design. Here, the chemical environment of a functional group that is activated for defect passivation was systematically investigated with theophylline, caffeine, and theobromine. When N-H and C=O were in an optimal configuration in the molecule, hydrogen-bond formation between N-H and I (iodine) assisted the primary C=O binding with the antisite Pb (lead) defect to maximize surface-defect binding. A stabilized power conversion efficiency of 22.6% of photovoltaic device was demonstrated with theophylline treatment.

17.
Dalton Trans ; 46(34): 11479-11490, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28820199

RESUMO

The acid-base and copper(ii) coordination properties of three previously described cyclam derivatives are reported. Potentiometry, mass spectrometry, UV-vis absorption spectroscopy, electrochemistry and theoretical calculations were combined to investigate the protonation and binding properties of Bn-cyclam-EtOH (L1), oxo-cyclam-EtOH (L2) and oxo-Bn-cyclam-EtOH (L3). These three cyclams are C-functionalized by a hydroxyethyl pendant arm and display either one N-benzyl group and/or an amide replacing one macrocyclic secondary amine. The N-benzylic substitution has a significant effect of lowering the basicity of the corresponding protonation sites, while the presence of the amide function lowers the first protonation constants of the ligands. Regardless of the system considered, ESI mass spectrometry showed that only monocupric chelates are formed. Compared to the literature data, the stability constants measured by potentiometry (pCu L1 = 14.67; pCu L2 = 16.95; pCu L3 = 15.28) showed that: (i) the C-appended group has a negligible influence on Cu2+ complexation, (ii) N-benzylation decreases the cupric complex stability, and (iii) the "oxo" function significantly increases the stability of the Cu2+ complex. Furthermore, UV-vis absorption versus pH measurements are in excellent agreement with the potentiometric titrations and show an equal involvement of the four nitrogen atoms in L1 and the strong binding properties of L2 and L3 related to the deprotonation of the carboxamide. The electrochemistry parameters determined by cyclic voltammetry showed the predominance of the [CuL1]2+, [CuL2-H]+ and [CuL3-H]+ species but also the irreversibility of the three Cu2+/Cu+ systems. Finally, density functional theory (DFT) and multiconfigurational CASSCF/NEVPT2 calculations confirmed that the protonation of the cupric complexes occurs at the oxygen atom of the amide group of the "oxo" ligands, which is in agreement with the experimental data.

18.
Nat Commun ; 8: 14478, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211535

RESUMO

In search of antiparasitic agents, we here identify arylmethylamino steroids as potent compounds and characterize more than 60 derivatives. The lead compound 1o is fast acting and highly active against intraerythrocytic stages of chloroquine-sensitive and resistant Plasmodium falciparum parasites (IC50 1-5 nM) as well as against gametocytes. In P. berghei-infected mice, oral administration of 1o drastically reduces parasitaemia and cures the animals. Furthermore, 1o efficiently blocks parasite transmission from mice to mosquitoes. The steroid compounds show low cytotoxicity in mammalian cells and do not induce acute toxicity symptoms in mice. Moreover, 1o has a remarkable activity against the blood-feeding trematode parasite Schistosoma mansoni. The steroid and the hydroxyarylmethylamino moieties are essential for antimalarial activity supporting a chelate-based quinone methide mechanism involving metal or haem bioactivation. This study identifies chemical scaffolds that are rapidly internalized into blood-feeding parasites.


Assuntos
Aminas/farmacologia , Antiparasitários/farmacologia , Esteroides/farmacologia , Aminas/química , Aminas/farmacocinética , Animais , Anopheles/parasitologia , Anti-Infecciosos/farmacologia , Antiparasitários/química , Antiparasitários/farmacocinética , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Células Germinativas/efeitos dos fármacos , Concentração Inibidora 50 , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/parasitologia , Malária/transmissão , Camundongos , Modelos Biológicos , Parasitos/efeitos dos fármacos , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/ultraestrutura , Esteroides/química , Esteroides/farmacocinética , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA