Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 124, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882823

RESUMO

BACKGROUND: Gram-negative bacteria (GNB) including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae represent the most relevant reservoir of resistance genes such as metallo-ß-lactamase (MBL) and AmpC genes that give them the undue advantage to resist antimicrobial onslaught. This study aimed to investigate the occurrence of MBL (blaIMP-1, blaIMP-2, blaVIM-1, blaVIM-2) and AmpC (blaFOX, blaDHA, blaCMY, blaACC) resistance genes in aforementioned GNB collected from abattoir and poultry sources in Nigeria. RESULTS: In total, 370 isolates were collected from abattoir tables (n = 130), anal region of cows (n = 120), and the cloacae of poultry birds (n = 120). The test isolates showed high rate of resistance to cephalosporins and carbapenems. The MBLs were phenotypically detected in 22 E. coli, 22 P. aeruginosa, and 18 K. pneumoniae isolates using combined disc test (CDT). However, only 11 E. coli, 24 P. aeruginosa, and 18 Klebsiella pneumoniae isolates were phenotypically confirmed to be AmpC producers using cefoxitin-cloxacillin double disk synergy test (CC-DDST). MBL encoding genes (particularly the blaIMP-1 genes and blaIMP-2 genes) were detected by polymerase chain reaction (PCR) in 12 (54.6%) E. coli, 15 (83.3%) K. pneumoniae, and 16 (72.7%) P. aeruginosa isolates. AmpC genes (particularly the blaCMY genes and blaFOX genes) were found in a total of 5 (29.4%) E. coli isolates, 5 (27.8%) isolates of K. pneumoniae, and 10 (41.7%) isolates of P. aeruginosa. CONCLUSIONS: Our study showed the circulation of MBL and AmpC genes in GNB from abattoir and poultry origin in Nigeria. Adoption of regular control policies is necessary to reduce the spread of these species as soon as possible, especially in poultry and slaughterhouses.


Assuntos
Matadouros , Proteínas de Bactérias/genética , Enterobacteriaceae/genética , Aves Domésticas/microbiologia , beta-Lactamases/genética , Animais , Enterobacteriaceae/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Nigéria , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética
2.
Ecotoxicol Environ Saf ; 153: 116-126, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29425842

RESUMO

Biochar amendment to soil is predicted globally as a means to enhance soil health. Alongside the beneficial result on soil nutrient availability and retention, biochar is presumed to increase soil macro / microbiota composition and improve plant growth. However, evidence for such an effect remains elusive in many tropical agricultural soils. The influence of biochar aged in soil was assessed on soil microbiota, macrobiota (Eudrilus eugeniae), seedling emergence and early plant growth of Oryza sativa and Solanum lycopersicum in tropical agricultural soil, over a 90 d biochar-soil contact time. Results showed negative impacts of increased loading of biochar on the survival and growth of E. eugeniae. LC50 and EC50 values ranged from 34.8% to 86.8% and 0.9-23.7% dry biochar kg-1 soil, over time. The growth of the exposed earthworms was strongly reduced (R2 = -0.866, p < 0.05). Biochar significantly increased microbiota abundance relative to the control soil (p < 0.001). However, fungal population was reduced by biochar addition. Biochar application threshold of 10% and 5% was observed for (O. sativa) and (S. lycopersicum), respectively. Furthermore, the addition of biochar to soil resulted in increased aboveground (shoot) biomass (p < 0.01). However, the data revealed that biochar did not increase the belowground (root) biomass of the plant species during the 90 d biochar-soil contact time. The shoot-to-root-biomass increase indicates a direct toxic influence of biochar on plant roots. This reveals that nutrient availability is not the only mechanism involved in biota-biochar interactions. Detailed studies on specific biota-plant-responses to biochars between tropical, temperate and boreal environments are needed to resolve the large variations and mechanisms behind these effects.


Assuntos
Carvão Vegetal/toxicidade , Microbiota/efeitos dos fármacos , Oryza/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Solanum/efeitos dos fármacos , Animais , Disponibilidade Biológica , Biomassa , Carvão Vegetal/análise , Ecossistema , Oligoquetos/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/análise , Solanum/crescimento & desenvolvimento , Fatores de Tempo , Clima Tropical
3.
Data Brief ; 18: 1064-1068, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900275

RESUMO

Accumulation of heavy metals results in soil degradation and impairs the normal functioning of ecosystems. Thus, monitoring of heavy metals is essential in both pristine and polluted soils. Concentrations of heavy metals were determined in a pristine tropical agricultural soil using acid digestion procedures. The soil samples were also analyzed for physico-chemical parameters and biochar toxicity to earthworms. Data shows that the soil is acidic, with low organic matter content. The level of heavy metals ranged from <0.06±0.0 to 595.8±2.8 µg g-1. However, the concentrations were found to be below the soil regulatory standards of heavy metals in agricultural soils. Furthermore, increased addition of biochar to the soil caused toxic effect on earthworms over a 90 d biochar-soil contact time. The data provides baseline information of heavy metals in pristine agricultural soils from the region, and the effect of biochar amendments on tropical soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA