Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Glob Chang Biol ; 28(12): 3929-3943, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35263490

RESUMO

The impacts of climate change on ecosystem structure and functioning are likely to be strongest at high latitudes due to the adaptation of biota to relatively low temperatures and nutrient levels. Soil warming is widely predicted to alter microbial, invertebrate, and plant communities, with cascading effects on ecosystem functioning, but this has largely been demonstrated over short-term (<10 year) warming studies. Using a natural soil temperature gradient spanning 10-35°C, we examine responses of soil organisms, decomposition, nitrogen cycling, and plant biomass production to long-term warming. We find that decomposer organisms are surprisingly resistant to chronic warming, with no responses of bacteria, fungi, or their grazers to temperature (fungivorous nematodes being an exception). Soil organic matter content instead drives spatial variation in microorganism abundances and mineral N availability. The few temperature effects that appear are more focused: root biomass and abundance of root-feeding nematodes decrease, and nitrification increases with increasing soil temperature. Our results suggest that transient responses of decomposers and soil functioning to warming may stabilize over time following acclimation and/or adaptation, highlighting the need for long-term, ecosystem-scale studies that incorporate evolutionary responses to soil warming.


Assuntos
Ecossistema , Solo , Mudança Climática , Plantas , Solo/química , Microbiologia do Solo , Temperatura
2.
Glob Chang Biol ; 27(16): 3765-3778, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34009702

RESUMO

Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator-prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4-18℃). This enabled us to parameterize a Rosenzweig-MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator-prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator-prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Aclimatação , Animais , Islândia , Dinâmica Populacional , Temperatura
3.
Glob Chang Biol ; 27(13): 3166-3178, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33797829

RESUMO

Ecological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results. Bacterial communities in coastal ecosystems underpin marine food webs and provide many important ecosystem services (e.g. nutrient cycling and carbon fixation). Yet, how microbial communities will respond to a changing climate remains uncertain. Thus, we used marine mesocosms to examine the impacts of warming, nutrient enrichment, and altered top-predator population size structure (common shore crab) on coastal microbial biofilm communities in a crossed experimental design. Warming increased bacterial α-diversity (18% increase in species richness and 67% increase in evenness), but this was countered by a decrease in α-diversity with nutrient enrichment (14% and 21% decrease for species richness and evenness, respectively). Thus, we show some effects of these stressors could cancel each other out under climate change scenarios. Warming and top-predator population size structure both affected bacterial biofilm community composition, with warming increasing the abundance of bacteria capable of increased mineralization of dissolved and particulate organic matter, such as Flavobacteriia, Sphingobacteriia, and Cytophagia. However, the community shifts observed with warming depended on top-predator population size structure, with Sphingobacteriia increasing with smaller crabs and Cytophagia increasing with larger crabs. These changes could alter the balance between mineralization and carbon sequestration in coastal ecosystems, leading to a positive feedback loop between warming and CO2 production. Our results highlight the potential for warming to disrupt microbial communities and biogeochemical cycling in coastal ecosystems, and the importance of studying these effects in combination with other environmental stressors.


Assuntos
Ecossistema , Microbiota , Bactérias , Biofilmes , Mudança Climática , Cadeia Alimentar , Humanos
4.
J Anim Ecol ; 90(5): 1217-1227, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33625727

RESUMO

Climate warming is predicted to have major impacts on the structure of terrestrial communities, particularly in high latitude ecosystems where growing seasons are short. Higher temperatures may dampen seasonal dynamics in community composition as a consequence of earlier snowmelt, with potentially cascading effects across all levels of biological organisation. Here, we examined changes in community assembly and structure along a natural soil temperature gradient in the Hengill geothermal valley, Iceland, during the summer of 2015. Sample collection over several time points within a season allowed us to assess whether temperature alters temporal variance in terrestrial communities and compositional turnover. We found that seasonal fluctuations in species richness, diversity and evenness were dampened as soil temperature increased, whereas invertebrate biomass varied more. Body mass was found to be a good predictor of species occurrence, with smaller species found at higher soil temperatures and emerging earlier in the season. Our results provide more in-depth understanding of the temporal nature of community and population-level responses to temperature, and indicate that climate warming will likely dampen the seasonal turnover of community structure that is characteristic of high latitude invertebrate communities.


Assuntos
Ecossistema , Invertebrados , Animais , Biodiversidade , Mudança Climática , Islândia , Estações do Ano , Solo , Temperatura
5.
J Anim Ecol ; 88(6): 833-844, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30873610

RESUMO

Ecological studies of global warming impacts have many constraints. Organisms are often exposed to higher temperatures for short periods of time, probably underestimating their ability to acclimate or adapt relative to slower but real rates of warming. Many studies also focus on a limited number of traits and miss the multifaceted effects that warming may have on organisms, from physiology to behaviour. Organisms exhibit different movement traits, some of which are primarily driven by metabolic processes and others by decision-making, which should influence the extent to which temperature affects them. We collected snails from streams that have been differentially heated by geothermal activity for decades to determine how long-term exposure to different temperatures affected their metabolism and movement. Additionally, we collected snails from a cold stream (5°C) and measured their metabolism and movement at higher temperatures (short-term exposure). We used respirometry to measure metabolic rates and automated in situ image-based tracking to quantify several movement traits from 5 to 21°C. Long-term exposure to higher temperatures resulted in a greater thermal sensitivity of metabolic rate compared to snails exposed for short durations, highlighting the need for caution when conducting acute temperature exposures in global warming research. Average speed, which is largely driven by metabolism, also increased more with temperature for long-term exposure compared to short-term exposure. Movement traits we interpret as more decision-based, such as time spent moving and trajectory shape, were less affected by temperature. Step length increased and step angle decreased at higher temperatures for both long- and short-term exposure, resulting in overall straighter trajectories. The power-law exponent of the step length distributions and fractal dimension of trajectories were independent of temperature, however, suggesting that snails retained the same movement strategy. The observed changes in snail movement at higher temperatures should lead to higher encounter rates and more efficient searching, providing a behavioural mechanism for stronger plant-herbivore interactions in warmer environments. Our research is among the first to show that temperature has contrasting effects on different movement traits, which may be determined by the metabolic contribution to those behaviours.


Assuntos
Aclimatação , Temperatura Alta , Animais , Aquecimento Global , Caramujos , Temperatura
6.
J Anim Ecol ; 88(11): 1670-1683, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31283002

RESUMO

Global warming is one of the greatest threats to the persistence of populations: increased metabolic demands should strengthen pairwise species interactions, which could destabilize food webs at the higher organizational levels. Quantifying the temperature dependence of consumer-resource interactions is thus essential for predicting ecological responses to warming. We explored feeding interactions between different predator-prey pairs in controlled-temperature chambers and in a system of naturally heated streams. We found consistent temperature dependence of attack rates across experimental settings, though the magnitude and activation energy of attack rate were specific to each predator, which varied in mobility and foraging mode. We used these parameters along with metabolic rate measurements to estimate energetic efficiency and population abundance with warming. Energetic efficiency accurately estimated field abundance of a mobile predator that struggled to meet its metabolic demands, but was a poor predictor for a sedentary predator that operated well below its energetic limits. Temperature effects on population abundance may thus be strongly dependent on whether organisms are regulated by their own energy intake or interspecific interactions. Given the widespread use of functional response parameters in ecological modelling, reconciling outcomes from laboratory and field studies increases the confidence and precision with which we can predict warming impacts on natural systems.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Aquecimento Global , Temperatura
7.
J Anim Ecol ; 87(3): 634-646, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29368345

RESUMO

Global warming is predicted to significantly alter species physiology, biotic interactions and thus ecosystem functioning, as a consequence of coexisting species exhibiting a wide range of thermal sensitivities. There is, however, a dearth of research examining warming impacts on natural communities. Here, we used a natural warming experiment in Iceland to investigate the changes in above-ground terrestrial plant and invertebrate communities along a soil temperature gradient (10°C-30°C). The α-diversity of plants and invertebrates decreased with increasing soil temperature, driven by decreasing plant species richness and increasing dominance of certain invertebrate species in warmer habitats. There was also greater species turnover in both plant and invertebrate communities with increasing pairwise temperature difference between sites. There was no effect of temperature on percentage cover of vegetation at the community level, driven by contrasting effects at the population level. There was a reduction in the mean body mass and an increase in the total abundance of the invertebrate community, resulting in no overall change in community biomass. There were contrasting effects of temperature on the population abundance of various invertebrate species, which could be explained by differential thermal tolerances and metabolic requirements, or may have been mediated by changes in plant community composition. Our study provides an important baseline from which the effect of changing environmental conditions on terrestrial communities can be tracked. It also contributes to our understanding of why community-level studies of warming impacts are imperative if we are to disentangle the contrasting thermal responses of individual populations.


Assuntos
Biodiversidade , Embriófitas/fisiologia , Aquecimento Global , Invertebrados/fisiologia , Temperatura , Animais , Regiões Árticas , Islândia , Solo
8.
Ecol Lett ; 19(9): 1032-40, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27346328

RESUMO

Species extinctions are accelerating globally, yet the mechanisms that maintain local biodiversity remain poorly understood. The extinction of species that feed on or are fed on by many others (i.e. 'hubs') has traditionally been thought to cause the greatest threat of further biodiversity loss. Very little attention has been paid to the strength of those feeding links (i.e. link weight) and the prevalence of indirect interactions. Here, we used a dynamical model based on empirical energy budget data to assess changes in ecosystem stability after simulating the loss of species according to various extinction scenarios. Link weight and/or indirect effects had stronger effects on food-web stability than the simple removal of 'hubs', demonstrating that both quantitative fluxes and species dissipating their effects across many links should be of great concern in biodiversity conservation, and the potential for 'hubs' to act as keystone species may have been exaggerated to date.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Cadeia Alimentar , Modelos Biológicos , Especificidade da Espécie
9.
Ecol Lett ; 19(9): 1172-85, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27432641

RESUMO

Human actions challenge nature in many ways. Ecological responses are ineluctably complex, demanding measures that describe them succinctly. Collectively, these measures encapsulate the overall 'stability' of the system. Many international bodies, including the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, broadly aspire to maintain or enhance ecological stability. Such bodies frequently use terms pertaining to stability that lack clear definition. Consequently, we cannot measure them and so they disconnect from a large body of theoretical and empirical understanding. We assess the scientific and policy literature and show that this disconnect is one consequence of an inconsistent and one-dimensional approach that ecologists have taken to both disturbances and stability. This has led to confused communication of the nature of stability and the level of our insight into it. Disturbances and stability are multidimensional. Our understanding of them is not. We have a remarkably poor understanding of the impacts on stability of the characteristics that define many, perhaps all, of the most important elements of global change. We provide recommendations for theoreticians, empiricists and policymakers on how to better integrate the multidimensional nature of ecological stability into their research, policies and actions.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Ecossistema , Biodiversidade , Terminologia como Assunto
10.
Glob Chang Biol ; 22(9): 3206-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26936833

RESUMO

Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.


Assuntos
Ecossistema , Temperatura , Truta , Animais , Dieta , Cadeia Alimentar , Islândia
11.
J Anim Ecol ; 85(5): 1133-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27511321

RESUMO

Clockwise from left: an experimental stream reach from the study, highlighting the fences used to contain fish as the apex predator; a cutthroat trout from the experiment, the only fish species in the study streams; stomach contents from a fish, highlighting the major role of the terrestrial subsidy (mealworms) in the diet. In Focus: Sato, T., El-Sabaawi, R.W., Campbell, K., Ohta, T. & Richardson, J.S. (2016) A test of the effects of timing of a pulsed resource subsidy on stream ecosystems. Journal of Animal Ecology, 85, 1136-1146. Cross-ecosystem subsidies play a critical role in maintaining the structure and functioning of natural communities, especially if they are asynchronous with resource production in the recipient ecosystem. Sato et al. () use a large-scale field experiment to show that changes in the timing of a pulsed terrestrial subsidy can alter stream dynamics from the individual to the ecosystem level. With increasing evidence that global warming will alter the timing, magnitude and frequency of allochthonous inputs, these findings make an important contribution to our understanding of how such changes will reverberate throughout ecosystems that depend on subsidies.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Ecologia , Peixes , Oncorhynchus
12.
Glob Chang Biol ; 21(11): 3971-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26147063

RESUMO

It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top-predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient-enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long-term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long-term effects of declining body size on the bioenergetic balance of natural communities.


Assuntos
Biota , Eutrofização , Cadeia Alimentar , Temperatura , Anfípodes/fisiologia , Animais , Tamanho Corporal , Braquiúros/crescimento & desenvolvimento , Braquiúros/fisiologia , Irlanda do Norte , Comportamento Predatório , Alga Marinha/fisiologia
13.
Glob Chang Biol ; 20(11): 3291-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24729541

RESUMO

Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small-scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small-scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming.


Assuntos
Evolução Biológica , Ecossistema , Aquecimento Global , Fontes Termais , Mudança Climática
14.
J Anim Ecol ; 83(3): 525-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-26051857

RESUMO

There is a growing appreciation for the importance of non-consumptive effects in predator-prey interaction research, which can often outweigh the importance of direct feeding. Barrios-O'Neill et al. (2014) report a novel method to characterize such effects by comparing the functional response of native and introduced intermediate consumers in the presence and absence of a higher predator. The invader exhibited stronger direct feeding and was also more resistant to intimidation by the higher predator. This experimental framework may be incorporated into mainstream global change research, for example, to quantify the importance of non-consumptive effects for the success or failure of biological invasions.


Assuntos
Crustáceos/fisiologia , Cadeia Alimentar , Espécies Introduzidas , Comportamento Predatório , Smegmamorpha/fisiologia , Animais
15.
Nat Commun ; 15(1): 3979, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729972

RESUMO

A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding. As temperature increased, we show that predators became closer in size to their prey, which was primarily associated with a decline in predator size and an increase in the relative abundance of intermediate-sized prey. The potential implications of these changes include reduced top-down control of prey populations and a reduction in the diversity of predator-prey interactions. Both of these factors could reduce the stability of community dynamics and ecosystem resistance to perturbations under ocean warming.


Assuntos
Tamanho Corporal , Peixes , Oceanos e Mares , Comportamento Predatório , Temperatura , Animais , Comportamento Predatório/fisiologia , Tamanho Corporal/fisiologia , Peixes/fisiologia , Cadeia Alimentar , Ecossistema , Dinâmica Populacional
16.
Nat Clim Chang ; 14(4): 387-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617202

RESUMO

Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea). Our results show that foraging shifts from trait- to density-dependent prey selectivity in warmer and more productive environments. This behavioural change leads to lower consumption efficiency at higher temperature as fish select more abundant but less energetically rewarding prey, thereby undermining species persistence and biodiversity. By integrating this behaviour into dynamic food web models, our study reveals that flexible foraging leads to lower species coexistence and biodiversity in communities under global warming.

17.
Sci Total Environ ; 929: 172536, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643886

RESUMO

Oil and gas exploitation introduces toxic contaminants such as hydrocarbons and heavy metals to the surrounding sediment, resulting in deleterious impacts on marine benthic communities. This study combines benthic monitoring data over a 30-year period in the North Sea with dietary information on >1400 taxa to quantify the effects of active oil and gas platforms on benthic food webs using a multiple before-after control-impact experiment. Contamination from oil and gas platforms caused declines in benthic food web complexity, community abundance, and biodiversity. Fewer trophic interactions and increased connectance indicated that the community became dominated by generalists adapting to alternative resources, leading to simpler but more connected food webs in contaminated environments. Decreased mean body mass, shorter food chains, and the dominance of small detritivores such as Capitella capitata near to structures suggested a disproportionate loss of larger organisms from higher trophic levels. These patterns were associated with concentrations of hydrocarbons and heavy metals that exceed OSPAR's guideline thresholds of sediment toxicity. This study provides new evidence to better quantify and manage the environmental consequences of oil and gas exploitation at sea.


Assuntos
Biodiversidade , Monitoramento Ambiental , Cadeia Alimentar , Invertebrados , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Organismos Aquáticos , Mar do Norte , Metais Pesados/análise , Campos de Petróleo e Gás , Sedimentos Geológicos/química
18.
Sci Data ; 11(1): 236, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396055

RESUMO

The dataset presents a compilation of stomach contents from six demersal fish species from two functional groups inhabiting the Baltic Sea. It includes detailed information on prey identities, body masses, and biomasses recovered from both the fish's digestive systems and their surrounding environment. Environmental parameters, such as salinity and temperature levels, have been integrated to enrich this dataset. The juxtaposition of information on prey found in stomachs and in the environment provides an opportunity to quantify trophic interactions across different environmental contexts and investigate how fish foraging behaviour adapts to changes in their environment, such as an increase in temperature. The compilation of body mass and taxonomic information for all species allows approaching these new questions using either a taxonomic (based on species identity) or functional trait (based on body mass) approach.


Assuntos
Peixes , Conteúdo Gastrointestinal , Animais , Países Bálticos , Oceanos e Mares
19.
Commun Biol ; 7(1): 316, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480906

RESUMO

Warming can have profound impacts on ecological communities. However, explorations of how differences in biogeography and productivity might reshape the effect of warming have been limited to theoretical or proxy-based approaches: for instance, studies of latitudinal temperature gradients are often conflated with other drivers (e.g., species richness). Here, we overcome these limitations by using local geothermal temperature gradients across multiple high-latitude stream ecosystems. Each suite of streams (6-11 warmed by 1-15°C above ambient) is set within one of five regions (37 streams total); because the heating comes from the bedrock and is not confounded by changes in chemistry, we can isolate the effect of temperature. We found a negative overall relationship between diatom and invertebrate species richness and temperature, but the strength of the relationship varied regionally, declining more strongly in regions with low terrestrial productivity. Total invertebrate biomass increased with temperature in all regions. The latter pattern combined with the former suggests that the increased biomass of tolerant species might compensate for the loss of sensitive species. Our results show that the impact of warming can be dependent on regional conditions, demonstrating that local variation should be included in future climate projections rather than simply assuming universal relationships.


Assuntos
Ecossistema , Rios , Animais , Biomassa , Biodiversidade , Invertebrados
20.
Glob Chang Biol ; 19(11): 3540-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23749600

RESUMO

Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate-warming-related changes in size could ripple across multiple levels of ecological organization. Some recent studies have questioned the ubiquity of temperature-size rules, however, and certain widespread and abundant taxa, such as diatoms, may be important exceptions. We tested the hypothesis that diatoms are smaller at warmer temperatures using a system of geothermally heated streams. There was no consistent relationship between size and temperature at either the population or community level. These field data provide important counterexamples to both James' and Bergmann's temperature-size rules, respectively, undermining the widely held assumption that warming favours the small. This study provides compelling new evidence that diatoms are an important exception to temperature-size rules for three reasons: (i) we use many more species than prior work; (ii) we examine both community and species levels of organization simultaneously; (iii) we work in a natural system with a wide temperature gradient but minimal variation in other factors, to achieve robust tests of hypotheses without relying on laboratory setups, which have limited realism. In addition, we show that interspecific effects were a bigger contributor to whole-community size differences, and are probably more ecologically important than more commonly studied intraspecific effects. These findings highlight the need for multispecies approaches in future studies of climate warming and body size.


Assuntos
Diatomáceas/citologia , Ecossistema , Mudança Climática , Diatomáceas/classificação , Islândia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA