Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Qual Health Res ; : 10497323241231856, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482592

RESUMO

This article draws on the concept of cultural humility, to describe and analyze a decolonizing approach to co-designing a primary prevention basketball program for young African-Australian people in Melbourne, Australia. We explore the potential for genuine collaboration and power-sharing with a culturally diverse community through collaboratively developing the co-design process and resultant program design. This article highlights the central role of UBUNTU in the co-design process, prioritizing African ways of knowing, being, and doing within a Westernized social work and design context. Through reporting on the stages of program design, we offer an example of how Indigenous knowledges and philosophies such as UBUNTU might be incorporated into co-design through cultural humility. We suggest this allows for a transformation of design tools and processes in ways that undermine oppressive and marginalizing power imbalances in design and social work.

2.
Photochem Photobiol Sci ; 21(6): 923-934, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35088368

RESUMO

Zn-salophen complexes are a promising class of fluorescent chemosensors for nucleotides and nucleic acids. We have investigated, by means of steady state UV-Vis, ultrafast transient absorption, fluorescence emission and time dependent density functional theory (TD-DFT) the behavior of the excited states of a salicylidene tetradentate Schiff base (Sal), its Zn(II) coordination compound (Zn-Sal) and the effect of the interaction between Zn-Sal and adenosine diphosphate (ADP). TD-DFT shows that the deactivation of the excited state of Sal occurs through torsional motion, due to its rotatable bonds and twistable angles. Complexation with Zn(II) causes rigidity so that the geometry changes in the excited states with respect to the ground state structure are minimal. By addition of ADP to a freshly prepared Zn-Sal ethanol solution, a longer relaxation constant, in comparison to Zn-Sal, was measured, indicative of the interaction between Zn-Sal and ADP. After a few days, the Zn-Sal-ADP solution displayed the same static and dynamic behavior of a solution containing only the Sal ligand, demonstrating that the coordination of the ADP anion to Zn(II)leads to the demetallation of the Sal ligand. Fluorescence measurements also revealed an enhanced fluorescence at 375 nm following the addition of ADP to the solution, caused by the presence of 2,3-diamino naphthalene that is formed by demetallation and partial decomposition of the Sal ligand. The efficient fluorescence of this species at 375 nm could be selectively detected and used as a probe for the detection of ADP in solution.


Assuntos
Salicilatos , Zinco , Difosfato de Adenosina , Ligantes , Salicilatos/química , Zinco/química
3.
Nano Lett ; 21(4): 1729-1734, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570965

RESUMO

Expanding the activity of wide bandgap semiconductors from the UV into the visible range has become a central goal for their application in green solar photocatalysis. The hybrid plasmonic/semiconductor system, based on silver nanoparticles (Ag NPs) embedded in a film of CeO2, is an example of a functional material developed with this aim. In this work, we take advantage of the chemical sensitivity of free electron laser (FEL) time-resolved soft X-ray absorption spectroscopy (TRXAS) to investigate the electron transfer process from the Ag NPs to the CeO2 film generated by the NPs plasmonic resonance photoexcitation. Ultrafast changes (<200 fs) of the Ce N4,5 absorption edge allowed us to conclude that the excited Ag NPs transfer electrons to the Ce atoms of the CeO2 film through a highly efficient electron-based mechanism. These results demonstrate the potential of FEL-based TRXAS measurements for the characterization of energy transfer in novel hybrid plasmonic/semiconductor materials.

4.
Aust J Soc Issues ; 57(1): 70-87, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33821061

RESUMO

The COVID-19 pandemic is both a health and an economic crisis. Economically, lockdowns across Australia have devastated business and industry, creating immediate spikes in under- and unemployment. These impacts intersect with the precarious labour market of casualised and "gig" economy work, where young workers constitute an established and substantial group. While negatively impacting upon many young people's lives, in recent decades precarious employment has also been normalised for young people as they are encouraged to understand themselves as self-reliant and entrepreneurial in their working lives. Yet, these workers have been largely abandoned in the government's economic response to COVID-19. The economic impact and government response to the pandemic substantially disadvantage young people. This article analyses the impact of new government initiatives: the "JobKeeper" wage subsidy scheme, "JobSeeker" payments and early access to superannuation, "JobMaker" economic recovery plan and the redesign of university fees. These initiatives compound preexisting youth policy of low welfare levels, youth wages and high university fees to economically burden young people. Contrasting the repeated expression of anything pandemic related as "unprecedented", we argue that the economic abandonment of young people in the immediate COVID-19 crisis continues a decades-long precedent in Australia of economically disadvantaging young people.

5.
Nanotechnology ; 31(17): 174001, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31910399

RESUMO

In this work we show how the optical properties of ZnSe nanowires are modified by the presence of Ag nanoparticles on the sidewalls of the ZnSe nanowires. In particular, we show that the low-temperature luminescence of the ZnSe nanowires changes its shape, enhancing the phonon replicas of impurity-related recombination and affecting rise and decay times of the transient absorption bleaching at room temperatures, with an increase of the former and a decrease of the latter. In contrast, the deposition of Au nanoparticles on ZnSe nanowires does not change the optical properties of the sample. We suggest that the mechanism underlying these experimental observations is energy transfer via a resonant interaction, based on the fact that the localized surface plasmon resonance (LSPR) of Ag nanoparticles spectrally overlaps with absorption and emission of ZnSe, while the Au LSPR does not.

6.
Nanotechnology ; 32(2): 025703, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32937606

RESUMO

The knowledge of the carrier dynamics in nanostructures is of fundamental importance for the development of (opto)electronic devices. This is true for semiconducting nanostructures as well as for plasmonic nanoparticles (NPs). Indeed, improvement of photocatalytic efficiencies by combining semiconductor and plasmonic nanostructures is one of the reasons why their ultrafast dynamics are intensively studied. In this work, we will review our activity on ultrafast spectroscopy in nanostructures carried out in the recently established EuroFEL Support Laboratory. We have investigated the dynamical plasmonic responses of metal NPs both in solution and in 2D and 3D arrays on surfaces, with particular attention being paid to the effects of the NP shape and to the conversion of absorbed light into heat on a nano-localized scale. We will summarize the results obtained on the carrier dynamics in nanostructured perovskites with emphasis on the hot-carrier dynamics and in semiconductor nanosystems such as ZnSe and Si nanowires, with particular attention to the band-gap bleaching dynamics. Subsequently, the study of semiconductor-metal NP hybrids, such as CeO2-Ag NPs, ZnSe-Ag NPs and ZnSe-Au NPs, allows the discussion of interaction mechanisms such as charge carrier transfer and Förster interaction. Finally, we assess an alternative method for the sensitization of wide band gap semiconductors to visible light by discussing the relationship between the carrier dynamics of TiO2 NPs and V-doped TiO2 NPs and their catalytic properties.

7.
Environ Sci Technol ; 54(4): 2143-2151, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31898894

RESUMO

Whole-house emission rates and indoor loss coefficients of formaldehyde and other volatile organic compounds (VOCs) were determined from continuous measurements inside a net-zero energy home at two different air change rates (ACHs). By turning the mechanical ventilation on and off, it was demonstrated that formaldehyde concentrations reach a steady state much more quickly than other VOCs, consistent with a significant indoor loss rate attributed to surface uptake. The first order loss coefficient for formaldehyde was 0.47 ± 0.06 h-1 at 0.08 h-1 ACH and 0.88 ± 0.22 h-1 at 0.62 h-1 ACH. Loss rates for other VOCs measured were not discernible, with the exception of hexanoic acid. A factor of 5.5 increase in the ACH increased the whole-house emission rates of VOCs but by varying degrees (factors of 1.1 to 3.8), with formaldehyde displaying no significant change. The formaldehyde area-specific emission rate (86 ± 8 µg m-2 h-1) was insensitive to changes in the ACH because its large indoor loss rate muted the impact of ventilation on indoor air concentrations. These results demonstrate that formaldehyde loss rates must be taken into account to correctly estimate whole-house emission rates and that ventilation will not be as effective at reducing indoor formaldehyde concentrations as it is for other VOCs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Monitoramento Ambiental , Formaldeído , Ventilação
8.
Nanotechnology ; 30(21): 214001, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30716721

RESUMO

We present femtosecond transient transmission (or absorbance) measurements in silicon nanowires in the energy range 1.1-3.5 eV, from below the indirect band-gap to above the direct band-gap. Our pump-probe measurements allow us to give a complete picture of the carrier dynamics in silicon. In this way we perform an experimental study with a spectral completeness that is lacking in the whole literature on carrier dynamics in silicon. A particular emphasis is given to the dynamics of the transient absorbance at the energies relative to the direct band gap at 3.3 eV. Indeed, the use of pump energies below and above 3.3 eV allowed us to disentangle the dynamics of electrons and holes in their respective bands. The band gap renormalization of the direct band gap is also investigated for different pump energies. A critical discussion is given on the results below 3.3 eV where phonon-assisted processes are required in the optical transitions.

9.
J Synchrotron Radiat ; 22(3): 538-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931066

RESUMO

The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.

10.
Phys Chem Chem Phys ; 17(34): 22160-9, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26256039

RESUMO

The X-ray absorption spectra (XAS) of Ar2 and ArNe dimers and small Ar clusters in the L2,3 region (244-252 eV) of the Ar atom have been recorded using synchrotron light and a combination of coincidence methods and kinetic energy discrimination of energetic ions. The absorption peaks in the spectra of the dimers and clusters were found to be shifted and broadened relative to the peaks in the spectrum of the Ar atom. In order to unambiguously relate these chemical shifts to the electronic structure of the core excited states in dimers, we performed ab initio calculations of the XAS spectra. Implications of the results for the use of XAS as a structure determination method in large rare gas clusters are discussed.

11.
J Phys Chem A ; 117(21): 4394-403, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23638683

RESUMO

Helium nanodroplets are widely used as a cold, weakly interacting matrix for spectroscopy of embedded species. In this work, we excite or ionize doped He droplets using synchrotron radiation and study the effect onto the dopant atoms depending on their location inside the droplets (rare gases) or outside at the droplet surface (alkali metals). Using photoelectron-photoion coincidence imaging spectroscopy at variable photon energies (20-25 eV), we compare the rates of charge-transfer to Penning ionization of the dopants in the two cases. The surprising finding is that alkali metals, in contrast to the rare gases, are efficiently Penning ionized upon excitation of the (n = 2)-bands of the host droplets. This indicates rapid migration of the excitation to the droplet surface, followed by relaxation, and eventually energy transfer to the alkali dopants.

12.
ACS Photonics ; 10(5): 1566-1574, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215314

RESUMO

The electron injection efficiency and the steady state absorptance at different photon energies for a composite system made of Au NPs embedded in a cerium oxide matrix are reported. Cerium oxide can be coupled with plasmonic nanoparticles (NPs) to improve its catalytic properties by visible-light absorption. The present work is a study of the ultrafast dynamics of excited states induced by ultraviolet and visible-light excitation in Au NPs combined with cerium oxide, aimed at understanding the excitation pathways. The data, obtained by femtosecond transient absorption spectroscopy, show that the excitation of localized surface plasmon resonances (LSPRs) in the Au NPs leads to an ultrafast injection of electrons into the empty 4f states of the surrounding cerium oxide. Within the first few picoseconds, the injected electrons couple with the lattice distortion forming a polaronic excited state, with similar properties to that formed after direct band gap excitation of the oxide. At sub-picosecond delay times, we observed relevant differences in the energetics and the time dynamics as compared to the case of band gap excitation of the oxide. Using different pump energies across the LSPR-related absorption band, the efficiency of the electron injection from the NPs into the oxide was found to be rather high, with a maximum above 30%. The injection efficiency has a different trend in energy as compared to the LSPR-related static optical absorptance, showing a significant decrease in low energies. This behavior is explained considering different deexcitation pathways with variable weight across the LSPR band. The results are important for the design of materials with high overall solar catalytic efficiency.

13.
J Nanosci Nanotechnol ; 20(7): 4557-4562, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968518

RESUMO

Upon photoexcitation with a femtosecond laser pulse, the plasmonic resonance of a nanorod can couple with coherent vibrational modes generating a regular oscillating pattern in the transient absorbance of the nanostructure. The dynamics of the plasmon resonances of these materials are probed through femtosecond transient absorption spectroscopy in the spectral region between 400 nm and 1600 nm. Whereas in the visible range the spectra are comparable with the findings reported in the literature, the analysis of the transient NIR spectra revealed that their oscillation frequencies vary with wavelength, resulting in a strong distortion of the transient features that can be related to the specific lengths distribution of the nanorods contained in the sample. These findings suggest that in the design of efficient and highly sensitive gold-nanorod based plasmonic sensors a narrow size distribution of nanostructures is required.

14.
J Phys Chem Lett ; 11(14): 5686-5691, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32580554

RESUMO

The ultrafast dynamics of excited states in cerium oxide are investigated to access the early moments of polaron formation, which can influence the photocatalytic functionality of the material. UV transient absorbance spectra of photoexcited CeO2 exhibit a bleaching of the band edge absorbance induced by the pump and a photoinduced absorbance feature assigned to Ce 4f → Ce 5d transitions. A blue shift of the spectral response of the photoinduced absorbance signal in the first picosecond after the pump excitation is attributed to the dynamical formation of small polarons with a characteristic time of 330 fs. A further important result of our work is that the combined use of steady-state and ultrafast transient absorption allows us to propose a revised value for the optical gap for ceria (Eog = 4 eV), significantly larger than usually reported.

15.
Front Chem ; 7: 348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165061

RESUMO

The study of transition metal coordination complexes has played a key role in establishing quantum chemistry concepts such as that of ligand field theory. Furthermore, the study of the dynamics of their excited states is of primary importance in determining the de-excitation path of electrons to tailor the electronic properties required for important technological applications. This work focuses on femtosecond transient absorption spectroscopy of Cobalt tris(acetylacetonate) (Co(AcAc)3) in solution. The fast transient absorption spectroscopy has been employed to study the excited state dynamics after optical excitation. Density functional theory coupled with the polarizable continuum model has been used to characterize the geometries and the electronic states of the solvated ion. The excited states have been calculated using the time dependent density functional theory formalism. The time resolved dynamics of the ligand to metal charge transfer excitation revealed a biphasic behavior with an ultrafast rise time of 0.07 ± 0.04 ps and a decay time of 1.5 ± 0.3 ps, while the ligand field excitations dynamics is characterized by a rise time of 0.07 ± 0.04 ps and a decay time of 1.8 ± 0.3 ps. Time dependent density functional theory calculations of the spin-orbit coupling suggest that the ultrafast rise time can be related to the intersystem crossing from the originally photoexcited state. The picosecond decay is faster than that of similar cobalt coordination complexes and is mainly assigned to internal conversion within the triplet state manifold. The lack of detectable long living states (>5 ps) suggests that non-radiative decay plays an important role in the dynamics of these molecules.

16.
J Geophys Res Biogeosci ; 124(7): 1887-1904, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31598447

RESUMO

With the addition of nitrogen (N), agricultural soils are the main anthropogenic source of N2O, but high spatial and temporal variabilities make N2O emissions difficult to characterize at the field scale. This study used flux-gradient measurements to continuously monitor N2O emissions at two agricultural fields under different management regimes in the inland Pacific Northwest of Washington State, USA. Automated 16-chamber arrays were also deployed at each site; chamber monitoring results aided the interpretation of the flux gradient results. The cumulative emissions over the six-month (1 April-30 September) monitoring period were 2.4 ± 0.7 and 2.1 ± 2 kg N2O-N/ha at the no-till and conventional till sites, respectively. At both sites, maximum N2O emissions occurred following the first rainfall event after N fertilization, and both sites had monthlong emission pulses. The no-till site had a larger N2O emission factor than the Intergovernmental Panel on Climate Change Tier 1 emission factor of 1% of the N input, while the conventional-till site's emission factor was close to 1% of the N input. However, these emission factors are likely conservative. We estimate that the global warming potential of the N2O emissions at these sites is larger than that of the no-till conversion carbon uptake. We recommend the use of chambers to investigate spatiotemporal controls as a complementary method to micrometeorological monitoring, especially in systems with high variability. Continued monitoring coupled with the use of models is necessary to investigate how changing management and environmental conditions will affect N2O emissions.

17.
Nanoscale ; 11(21): 10282-10291, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31099368

RESUMO

The coupling with plasmonic metal nanoparticles (NPs) represents a promising opportunity to sensitize wide band gap oxides to visible light. The processes which come into play after the excitation of localized surface plasmon resonances (LSPRs) in the NPs largely determine the efficiency of the charge/energy transfer from the metal NP to the oxide. We report a study of plasmon-mediated energy transfer from mass-selected silver NPs into the cerium oxide matrix in which they are embedded. Femtosecond transient absorption spectroscopy is used to probe the dynamics of charge carrier relaxation after the excitation of the LSPR of the silver nanoparticles and to evaluate the plasmon-mediated electron transfer efficiency from the silver nanoparticles to the cerium oxide. High injection efficiencies in the 6-16% range have been identified for excitation between 400 and 600 nm. These high values have been explained in terms of plasmon-mediated direct electron injection as well as indirect hot electron injection from the NPs to the oxide. The information obtained provides an important contribution towards a knowledge-driven design of efficient cerium oxide based nanostructured materials for solar to chemical energy conversion.

18.
J Phys Chem A ; 112(14): 3086-93, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18341306

RESUMO

The thermal decomposition of azidoacetone (CH3COCH2N3) was studied using a combined experimental and computational approach. Flash pyrolysis at a range of temperatures (296-1250 K) was used to induce thermal decomposition, and the resulting products were expanded into a molecular beam and subsequently analyzed using electron bombardment ionization coupled to a quadrupole mass spectrometer. The advantages of this technique are that the parent molecules spend a very short time in the pyrolysis zone (20-30 mus) and that the subsequent expansion permits the stabilization of thermal products that are not observable using conventional pyrolysis methods. A detailed analysis of the mass spectra as a function of pyrolysis temperature revealed the participation of five thermal decomposition channels. Ab initio calculations on the stable structures and transition states of the azidoacetone system in combination with an analysis of the dissociative ionization pattern of each channel allowed the identity and mechanism of each channel to be elucidated. At low temperatures (296-800 K) the azide decomposes principally by the loss of N2 to yield the imine (CH3COCHNH), which can further decompose to CH3CO and CHNH. At low and intermediate temperatures a process involving the loss of N2 to yield CH3CHO and HCN is also open. Finally, at high temperatures (800-1250 K) a channel in which the azide decomposes to a stable cyclic amine (CO(CH2)2NH) (after loss of N2) is active. The last channel involves subsequent thermal decomposition of this cyclic amine to ketene (H2CCO) and methanimine (H2CNH).

19.
J Colloid Interface Sci ; 513: 10-19, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128618

RESUMO

Gold nanoparticles with an average diameter of 10 nm, functionalized by the dye molecule rhodamine B isothiocyanate, have been synthesized. The resulting material has been extensively characterized both chemically, to investigate the bonding between the dye molecules and the nanoparticles, and physically, to understand the details of the aggregation induced by interaction between dye molecules on different nanoparticles. The plasmonic response of the system has been further characterized by measurement and theoretical simulation of the static UV-Vis extinction spectra of the aggregates produced following different synthesis procedures. The model parameters used in the simulation gave further useful information on the aggregation and its relationship to the plasmonic response. Finally, we investigated the time dependence of the plasmonic effects of the nanoparticles and fluorescence of the dye molecule using an ultrafast pump-probe optical method. By modulating the quantity of dye molecules on the surface of the nanoparticles it was possible to exert fine control over the plasmonic response of nanoparticles.

20.
J Am Soc Mass Spectrom ; 25(3): 351-67, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24385396

RESUMO

In the present work, we studied the photoinduced ion chemistry of the halogenated pyrimidines, a class of prototype radiosensitizing molecules, in the energy region 9-15 eV. The work was stimulated by previous studies on inner shell site-selective fragmentation of the pyrimidine molecule, which have shown that the fragmentation is governed by the population/formation of specific ionic states with a hole in valence orbitals, which in turn correlate to accessible dissociation limits. The combined experimental and theoretical study of the appearance energies of the main fragments provides information on the geometric structure of the products and on the role played by the specific halogen atom and the site of halogenation in the dissociation process. This information can be used to gain new insights on the elementary mechanisms that could possibly explain the enhanced radiation damage to the DNA bases or to the medium in which the bases are embedded, thereby contributing to their radiosensitizing effect.


Assuntos
Espectrometria de Massas/métodos , Pirimidinas/química , Pirimidinas/efeitos da radiação , Raios Ultravioleta , Halogenação , Modelos Moleculares , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA