Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Macromol Rapid Commun ; 42(10): e2000660, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33834552

RESUMO

Attaching hydrogels to soft internal tissues is crucial for the development of various biomedical devices. Tough sticky hydrogel patches present high adhesion, yet with lack of injectability and the need for treatment of contacting surface. On the contrary, injectable and photo-curable hydrogels are highly attractive owing to their ease of use, flexibility of filling any shape, and their minimally invasive character, compared to their conventional preformed counterparts. Despite recent advances in material developments, a hydrogel that exhibits both proper injectability and sufficient intrinsic adhesion is yet to be demonstrated. Herein, a paradigm shift is proposed toward the design of intrinsically adhesive networks for injectable and photo-curable hydrogels. The bioinspired design strategy not only provides strong adhesive contact, but also results in a wide window of physicochemical properties. The adhesive networks are based on a family of polymeric backbones where chains are modified to be intrinsically adhesive to host tissue and simultaneously form a hydrogel network via a hybrid cross-linking mechanism. With this strategy, adhesion is achieved through a controlled synergy between the interfacial chemistry and bulk mechanical properties. The functionalities of the bioadhesives are demonstrated for various applications, such as tissue adhesives, surgical sealants, or injectable scaffolds.


Assuntos
Hidrogéis , Adesivos Teciduais , Adesivos , Polímeros , Medicina Regenerativa
2.
Exp Mol Pathol ; 110: 104277, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271729

RESUMO

Inflammation is linked to prostate cancer (PCa) and to other diseases of the prostate. The prostanoid thromboxane (TX)A2 is a pro-inflammatory mediator implicated in several prostatic diseases, including PCa. TXA2 signals through the TPα and TPß isoforms of the T Prostanoid receptor (TP) which exhibit several functional differences and transcriptionally regulated by distinct promoters Prm1 and Prm3, respectively, within the TBXA2R gene. This study examined the expression of TPα and TPß in inflammatory infiltrates within human prostate tissue. Strikingly, TPß expression was detected in 94% of infiltrates, including in B- and T-lymphocytes and macrophages. In contrast, TPα was more variably expressed and, where present, expression was mainly confined to macrophages. To gain molecular insight into these findings, expression of TPα and TPß was evaluated as a function of monocyte-to-macrophage differentiation in THP-1 cells. Expression of both TPα and TPß was upregulated following phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 to their macrophage lineage. Furthermore, FOXP1, an essential transcriptional regulator down-regulated during monocyte-to-macrophage differentiation, was identified as a key trans-acting factor regulating TPß expression through Prm3 in THP-1 cells. Knockdown of FOXP1 increased TPß, but not TPα, expression in THP-1 cells, while genetic reporter and chromatin immunoprecipitation (ChIP) analyses established that FOXP1 exerts its repressive effect on TPß through binding to four cis-elements within Prm3. Collectively, FOXP1 functions as a transcriptional repressor of TPß in monocytes. This repression is lifted in differentiated macrophages, allowing for upregulation of TPß expression and possibly accounting for the prominent expression of TPß in prostate tissue-resident macrophages.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica , Inflamação/genética , Próstata/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Doença Crônica , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Monócitos/citologia , Monócitos/metabolismo , Prostaglandinas/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Células THP-1
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(4): 838-856, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28108419

RESUMO

The prostanoid thromboxane (TX) A2 and its T Prostanoid receptor (the TP) are increasingly implicated in prostate cancer (PCa). Mechanistically, we recently discovered that both TPα and TPß form functional signalling complexes with members of the protein kinase C-related kinase (PRK) family, AGC- kinases essential for the epigenetic regulation of androgen receptor (AR)-dependent transcription and promising therapeutic targets for treatment of castrate-resistant prostate cancer (CRPC). Critically, similar to androgens, activation of the PRKs through the TXA2/TP signalling axis induces phosphorylation of histone H3 at Thr11 (H3Thr11), a marker of androgen-induced chromatin remodelling and transcriptional activation, raising the possibility that TXA2-TP signalling can mimic and/or enhance AR-induced cellular changes even in the absence of circulating androgens such as in CRPC. Hence the aim of the current study was to investigate whether TXA2/TP-induced PRK activation can mimic and/or enhance AR-mediated cellular responses in the model androgen-responsive prostate adenocarcinoma LNCaP cell line. We reveal that TXA2/TP signalling can act as a neoplastic- and epigenetic-regulator, promoting and enhancing both AR-associated chromatin remodelling (H3Thr11 phosphorylation, WDR5 recruitment and acetylation of histone H4 at lysine 16) and AR-mediated transcriptional activation (e.g of the KLK3/prostate-specific antigen and TMPRSS2 genes) through mechanisms involving TPα/TPß mediated-PRK1 and PRK2, but not PRK3, signalling complexes. Overall, these data demonstrate that TPα/TPß can act as neoplastic and epigenetic regulators by mimicking and/or enhancing the actions of androgens within the prostate and provides further mechanistic insights into the role of the TXA2/TP signalling axis in PCa, including potentially in CRPC.


Assuntos
Androgênios/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais , Tromboxano A2/farmacologia , Acetilação/efeitos dos fármacos , Androgênios/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Proteínas de Neoplasias/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Tromboxano A2/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3153-3169, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28890397

RESUMO

The prostanoid thromboxane (TX)A2 signals through the TPα and TPß isoforms of T Prostanoid receptor (TP) that are transcriptionally regulated by distinct promoters termed Prm1 and Prm3, respectively, within the TBXA2R gene. We recently demonstrated that expression of TPα and TPß is increased in PCa, differentially correlating with Gleason grade and with altered CpG methylation of the individual Prm1/Prm3 regions within the TBXA2R. The current study sought to localise the sites of CpG methylation within Prm1 and Prm3, and to identify the main transcription factors regulating TPß expression through Prm3 in the prostate adenocarcinoma PC-3 and LNCaP cell lines. Bisulfite sequencing revealed extensive differences in the pattern and status of CpG methylation of the individual Prm1 and Prm3 regions that regulate TPα and TPß expression, respectively, within the TBXA2R. More specifically, Prm1 is predominantly hypomethylated while Prm3 is hypermethylated across its entire sequence in PC-3 and LNCaP cells. Furthermore, the tumour suppressors FOXP1 and NKX3.1, strongly implicated in PCa development, were identified as key transcription factors regulating TPß expression through Prm3 in both PCa cell lines. Specific siRNA-disruption of FOXP1 and NKX3.1 each coincided with up-regulated TPß protein and mRNA expression, while genetic-reporter and chromatin immunoprecipitation (ChIP) analyses confirmed that both FOXP1 and NKX3.1 bind to cis­elements within Prm3 to transcriptionally repress TPß in the PCa lines. Collectively these data identify Prm3/TPß as a bona fide target of FOXP1 and NKX3.1 regulation, providing a mechanistic basis, at least in part, for the highly significant upregulation of TPß expression in PCa.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias da Próstata/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Proteínas Repressoras/metabolismo , Tromboxano A2/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Protaminas/genética , Isoformas de Proteínas , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Regulação para Cima
5.
Adv Healthc Mater ; 12(29): e2301944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565378

RESUMO

Porous tissue-engineered 3D-printed scaffolds are a compelling alternative to autografts for the treatment of large periorbital bone defects. Matching the defect-specific geometry has long been considered an optimal strategy to restore pre-injury anatomy. However, studies in large animal models have revealed that biomaterial-induced bone formation largely occurs around the scaffold periphery. Such ectopic bone formation in the periorbital region can affect vision and cause disfigurement. To enhance anatomic reconstruction, geometric mismatches are introduced in the scaffolds used to treat full thickness zygomatic defects created bilaterally in adult Yucatan minipigs. 3D-printed, anatomically-mirrored scaffolds are used in combination with autologous stromal vascular fraction of cells (SVF) for treatment. An advanced image-registration workflow is developed to quantify the post-surgical geometric mismatch and correlate it with the spatial pattern of the regenerating bone. Osteoconductive bone growth on the dorsal and ventral aspect of the defect enhances scaffold integration with the native bone while medio-lateral bone growth leads to failure of the scaffolds to integrate. A strong positive correlation is found between geometric mismatch and orthotopic bone deposition at the defect site. The data suggest that strategic mismatch >20% could improve bone scaffold design to promote enhanced regeneration, osseointegration, and long-term scaffold survivability.


Assuntos
Impressão Tridimensional , Alicerces Teciduais , Suínos , Animais , Porco Miniatura , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Osteogênese
6.
Biomaterials ; 282: 121392, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134701

RESUMO

Critical-sized midfacial bone defects present a unique clinical challenge due to their complex three-dimensional shapes and intimate associations with sensory organs. To address this challenge, a point-of-care treatment strategy for functional, long-term regeneration of 2 cm full-thickness segmental defects in the zygomatic arches of Yucatan minipigs is evaluated. A digital workflow is used to 3D-print anatomically precise, porous, biodegradable scaffolds from clinical-grade poly-ε-caprolactone and decellularized bone composites. The autologous stromal vascular fraction of cells (SVF) is isolated from adipose tissue extracts and infused into the scaffolds that are implanted into the zygomatic ostectomies. Bone regeneration is assessed up to 52 weeks post-operatively in acellular (AC) and SVF groups (BV/DV = 0.64 ± 0.10 and 0.65 ± 0.10 respectively). In both treated groups, bone grows from the adjacent tissues and restores the native anatomy. Significantly higher torque is required to fracture the bone-scaffold interface in the SVF (7.11 ± 2.31 N m) compared to AC groups (2.83 ± 0.23 N m). Three-dimensional microcomputed tomography analysis reveals two distinct regenerative patterns: osteoconduction along the periphery of scaffolds to form dense lamellar bone and small islands of woven bone deposits growing along the struts in the scaffold interior. Overall, this study validates the efficacy of using 3D-printed bioactive scaffolds with autologous SVF to restore geometrically complex midfacial bone defects of clinically relevant sizes while also highlighting remaining challenges to be addressed prior to clinical translation.


Assuntos
Fração Vascular Estromal , Alicerces Teciduais , Animais , Regeneração Óssea , Osteogênese , Sistemas Automatizados de Assistência Junto ao Leito , Impressão Tridimensional , Suínos , Porco Miniatura , Microtomografia por Raio-X
7.
PLoS One ; 14(11): e0225007, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31743350

RESUMO

3D-printing is a powerful manufacturing tool that can create precise microscale architectures across macroscale geometries. Within biomedical research, 3D-printing of various materials has been used to fabricate rigid scaffolds for cell and tissue engineering constructs with precise microarchitecture to direct cell behavior and macroscale geometry provides patient specificity. While 3D-printing hardware has become low-cost due to modeling and rapid prototyping applications, there is no common paradigm or platform for the controlled design and manufacture of 3D-printed constructs for tissue engineering. Specifically, controlling the tissue engineering features of pore size, porosity, and pore arrangement is difficult using currently available software. We have developed a MATLAB approach termed scafSLICR to design and manufacture tissue-engineered scaffolds with precise microarchitecture and with simple options to enable spatially patterned pore properties. Using scafSLICR, we designed, manufactured, and characterized porous scaffolds in acrylonitrile butadiene styrene with a variety of pore sizes, porosities, and gradients. We found that transitions between different porous regions maintained an open, connected porous network without compromising mechanical integrity. Further, we demonstrated the usefulness of scafSLICR in patterning different porous designs throughout large anatomic shapes and in preparing craniofacial tissue engineering bone scaffolds. Finally, scafSLICR is distributed as open-source MATLAB scripts and as a stand-alone graphical interface.


Assuntos
Algoritmos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Porosidade
8.
Tissue Eng Part A ; 25(21-22): 1459-1469, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30734661

RESUMO

Large craniofacial bone defects remain a clinical challenge due to their complex shapes and large volumes. Stem cell-based technologies that deliver osteogenic stem cells have shown remarkable regenerative potential but are hampered by the need for extensive in vitro manipulation before implantation. To address this, we explored the bone forming potential of the clinically relevant stromal vascular fraction (SVF) cells obtained from human lipoaspirate. SVF cells can be isolated for acute use in the operating room and contain a subpopulation of adipose-derived stromal/stem cells (ASCs) that can develop mineralized tissue. ASCs can be purified from the more heterogeneous population of SVF cells via secondary and tertiary culture on tissue culture plastic. In this study, the relative potential for using SVF cells or passaged ASCs to induce robust bone regeneration was compared. Isogenic SVF and ASCs were suspended in fibrin hydrogels and seeded in three-dimensional-printed osteoinductive scaffolds of decellularized bone matrix and polycaprolactone. In vitro, both cell populations successfully mineralized the scaffold, demonstrating the robust bone formation properties of SVF. In murine critical-sized cranial defects, ASC-loaded scaffolds had greater (but not statistically significant) bone volume and bone coverage area than SVF-loaded scaffolds. However, both cell-laden interventions resulted in significantly greater bone healing than contralateral acellular controls. In conclusion, we observed substantial in vitro mineralization and robust in vivo bone regeneration in tissue-engineered bone grafts using both SVF and passaged ASCs. Impact Statement The inability to effectively regenerate bone within critical-sized craniofacial defects is a present clinical challenge and overcoming this limitation using tissue engineering strategies would significantly advance current treatment outcomes. The present study tests the feasibility of harvesting stem cells intraoperatively, combining them with three-dimensional (3D)-printed osteoinductive scaffolds and, without culturing in vitro, implanting them into the bone defect to stimulate regeneration. The data from this study demonstrated that SVF isolated from lipoaspirate and used in vivo with minimal processing could be combined with a 3D-printed bioactive material in a point-of-care approach to promote bone regeneration.


Assuntos
Tecido Adiposo/citologia , Regeneração Óssea/fisiologia , Sistemas Automatizados de Assistência Junto ao Leito , Células-Tronco/citologia , Adulto , Animais , Calcificação Fisiológica , Feminino , Membro Posterior/irrigação sanguínea , Membro Posterior/diagnóstico por imagem , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Crânio/patologia , Células Estromais/citologia , Alicerces Teciduais/química , Microtomografia por Raio-X , Adulto Jovem
9.
Adv Healthc Mater ; 8(10): e1801565, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30941920

RESUMO

Adipose-derived stem cells (ASCs) are a promising cell source for regenerating critical-sized craniofacial bone defects, but their clinical use is limited due to the supraphysiological levels of bone morphogenetic protein-2 required to induce bone formation in large grafts. It has been recently reported that platelet-derived growth factor-BB (PDGF) directly enhances the osteogenesis of ASCs when applied at physiological concentrations. In this study, a biomimetic delivery system that tethers PDGF to decellularized bone matrix (DCB) is developed to enhance osteogenic signaling in bone grafts by colocalizing PDGF-extracellular matrix cues. Heparin is conjugated to DCB particles (HC-DCB) to promote sustained binding of PDGF via electrostatic interactions. HC-DCB particles bind to PDGF with >99% efficiency and release significantly less PDGF over 21 days compared to nonconjugated DCB particles (1.1% vs 22.8%). HC-DCB-PDGF signaling in polycaprolactone (PCL)-fibrin grafts promotes >40 µg Ca2+ µg-1 DNA deposition by ASCs during in vitro osteogenic culture compared to grafts without HC-DCB or PDGF. Furthermore, more bone formation is observed in grafts with HC-DCB-PDGF at 12 weeks following implantation of grafts into murine critical-sized calvarial defects. Collectively, these results demonstrate that HC-DCB enhances the osteogenic signaling of PDGF to ASCs and may be applied to promote ASC-mediated bone regeneration in critical-sized defects.


Assuntos
Becaplermina/metabolismo , Osso e Ossos/química , Heparina/química , Transdução de Sinais , Engenharia Tecidual , Tecido Adiposo/citologia , Animais , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibrina/química , Camundongos , Osteocalcina/metabolismo , Osteogênese , Poliésteres/química , Eletricidade Estática , Células-Tronco/citologia , Células-Tronco/metabolismo
10.
Oncotarget ; 6(28): 26437-56, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26296974

RESUMO

The prostanoid thromboxane (TX) A2 is increasingly implicated in neoplastic progression, including prostate cancer (PCa). Mechanistically, we recently identified protein kinase C-related kinase (PRK) 1 as a functional interactant of both the TPα and TPß isoforms of the human T prostanoid receptor (TP). The interaction with PRK1 was not only essential for TPα/TPß-induced PCa cell migration but also enabled the TXA2-TP axis to induce phosphorylation of histone H3 at Thr11 (H3Thr11), an epigenetic marker both essential for and previously exclusively associated with androgen-induced chromatin remodelling and transcriptional activation. PRK1 is a member of a subfamily of three structurally related kinases comprising PRK1/PKNα, PRK2/PKNγ and PRK3/PKNß that are widely yet differentially implicated in various cancers. Hence, focusing on the setting of prostate cancer, this study investigated whether TPα and/or TPß might also complex with PRK2 and PRK3 to regulate their activity and neoplastic responses. While TPα and TPß were found in immune complexes with PRK1, PRK2 and PRK3 to regulate their activation and signalling, they do so differentially and in a TP agonist-regulated manner dependent on the T-loop activation status of the PRKs but independent of their kinase activity. Furthermore, TXA2-mediated neoplastic responses in prostate adenocarcinoma PC-3 cells, including histone H3Thr11 phosphorylation, was found to occur through a PRK1- and PRK2-, but not PRK3-, dependent mechanism. Collectively, these data suggest that TXA2 acts as both a neoplastic and epigenetic regulator and provides a mechanistic explanation, at least in part, for the prophylactic benefits of Aspirin in reducing the risk of certain cancers.


Assuntos
Adenocarcinoma/enzimologia , Neoplasias da Próstata/enzimologia , Proteína Quinase C/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/agonistas , Tromboxano A2/farmacologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Epigênese Genética/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Treonina/metabolismo , Fatores de Tempo , Transfecção
11.
Br J Pharmacol ; 172(13): 3341-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25754766

RESUMO

BACKGROUND AND PURPOSE: Hypoxic conditions favour the reduction of nitrite to nitric oxide (NO) to elicit vasodilatation, but the mechanism(s) responsible for bioconversion remains ill defined. In the present study, we assess the role of aldehyde dehydrogenase 2 (ALDH2) in nitrite bioactivation under normoxia and hypoxia in the rat and human vasculature. EXPERIMENTAL APPROACH: The role of ALDH2 in vascular responses to nitrite was studied using rat thoracic aorta and gluteal subcutaneous fat resistance vessels from patients with heart failure (HF; 16 patients) in vitro and by measurement of changes in forearm blood flow (FBF) during intra-arterial nitrite infusion (21 patients) in vivo. Specifically, we investigated the effects of (i) ALDH2 inhibition by cyanamide or propionaldehyde and the (ii) tolerance-independent inactivation of ALDH2 by glyceryl trinitrate (GTN) on the vasodilator activity of nitrite. In each setting, nitrite effects were measured via evaluation of the concentration-response relationship under normoxic and hypoxic conditions in the absence or presence of ALDH2 inhibitors. KEY RESULTS: Both in rat aorta and human resistance vessels, dilatation to nitrite was diminished following ALDH2 inhibition, in particular under hypoxia. In humans there was a non-significant trend towards attenuation of nitrite-mediated increases in FBF. CONCLUSIONS AND IMPLICATIONS: In human and rat vascular tissue in vitro, hypoxic nitrite-mediated vasodilatation involves ALDH2. In patients with HF in vivo, the role of this enzyme in nitrite bioactivation is at the most, modest, suggesting the involvement of other more important mechanisms.


Assuntos
Aldeído Desidrogenase/fisiologia , Artérias/fisiologia , Hipóxia/fisiopatologia , Proteínas Mitocondriais/fisiologia , Nitritos/farmacologia , Vasodilatadores/farmacologia , Idoso , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído-Desidrogenase Mitocondrial , Aldeídos/farmacologia , Animais , Artérias/efeitos dos fármacos , Cianamida/farmacologia , Feminino , Antebraço/irrigação sanguínea , Insuficiência Cardíaca/fisiopatologia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/antagonistas & inibidores , Doadores de Óxido Nítrico/farmacologia , Nitroglicerina/farmacologia , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Espermina/análogos & derivados , Espermina/farmacologia , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA