RESUMO
Long-read DNA sequencing technologies have been rapidly evolving in recent years, and their ability to assess large and complex regions of the genome makes them ideal for clinical applications in molecular diagnosis and therapy selection, thereby providing a valuable tool for precision medicine. In the third-generation sequencing duopoly, Oxford Nanopore Technologies and Pacific Biosciences work towards increasing the accuracy, throughput, and portability of long-read sequencing methods while trying to keep costs low. These trades have made long-read sequencing an attractive tool for use in research and clinical settings. This article provides an overview of current clinical applications and limitations of long-read sequencing and explores its potential for point-of-care testing and health care in remote settings.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Nanoporos , Humanos , Análise de Sequência de DNARESUMO
Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, and personalized medicine. Nanoparticles, with their unique physicochemical properties, have shown significant promise in addressing current treatment limitations such as drug resistance and nonspecific systemic distribution. Applications range from enhancing drug delivery systems for targeted and sustained release to developing innovative diagnostic tools for early and precise detection of metastases. Moreover, the integration of nanoparticles into photothermal therapy and their synergistic use with existing treatments, such as immunotherapy, illustrate their transformative potential in cancer care. However, the journey towards clinical adoption is fraught with challenges, including the chemical feasibility, biodistribution, efficacy, safety concerns, scalability, and regulatory hurdles. This review delves into the current state of nanoparticle research, their applications in breast cancer therapy and diagnosis, and the obstacles that must be overcome for clinical integration.