Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Infect Dis ; 230(2): e486-e495, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38438123

RESUMO

BACKGROUND: The RTS,S/AS01E (RTS,S) malaria vaccine is recommended for children in malaria endemic areas. This phase 2b trial evaluates RTS,S fractional- and full-dose regimens in Ghana and Kenya. METHODS: In total, 1500 children aged 5-17 months were randomized (1:1:1:1:1) to receive RTS,S or rabies control vaccine. RTS,S groups received 2 full RTS,S doses at months 0 and 1 and either full (groups R012-20, R012-14-26) or fractional doses (one-fifth; groups Fx012-14-26, Fx017-20-32). RESULTS: At month 32 post-dose 1, vaccine efficacy against clinical malaria (all episodes) ranged from 38% (R012-20; 95% confidence interval [CI]: 24%-49%) to 53% (R012-14-26; 95% CI: 42%-62%). Vaccine impact (cumulative number of cases averted/1000 children vaccinated) was 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), and 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional vs full dose; post hoc analysis), we estimated cases averted/1000 RTS,S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), and 880 (Fx017-20-32). CONCLUSIONS: Vaccine efficacy was similar across RTS,S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If maintained through trial end, these observations underscore the means to reduce cost per regimen thus maximizing impact and optimizing supply. CLINICAL TRIALS REGISTRATION: NCT03276962 (ClinicalTrials.gov).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Eficácia de Vacinas , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Gana , Lactente , Quênia , Feminino , Masculino , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Esquemas de Imunização , Malária/prevenção & controle , Plasmodium falciparum/imunologia
2.
N Engl J Med ; 385(11): 1005-1017, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34432975

RESUMO

BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.).


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Vacinas Antimaláricas , Malária Falciparum/prevenção & controle , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Antimaláricos/efeitos adversos , Burkina Faso/epidemiologia , Quimioprevenção , Terapia Combinada , Método Duplo-Cego , Combinação de Medicamentos , Quimioterapia Combinada , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/epidemiologia , Malária Falciparum/mortalidade , Masculino , Mali/epidemiologia , Estações do Ano , Convulsões Febris/etiologia
3.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34894221

RESUMO

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Formação de Anticorpos , Criança , Humanos , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Estações do Ano , Vacinação
4.
Malar J ; 21(1): 59, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193608

RESUMO

BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Burkina Faso/epidemiologia , Quimioprevenção , Criança , Pré-Escolar , Estudos Transversais , Humanos , Lactente , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Mali/epidemiologia , Estado Nutricional , Estações do Ano , Vacinação
5.
BMC Public Health ; 22(1): 1568, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978276

RESUMO

Pharmacovigilance (PV) systems in many countries in sub-Saharan Africa (SSA) are not fully functional. The spontaneous adverse events (AE) reporting rate in SSA is lower than in any other region of the world, and healthcare professionals (HCPs) in SSA countries have limited awareness of AE surveillance and reporting procedures. The GSK PV enhancement pilot initiative, in collaboration with PATH and national PV stakeholders, aimed to strengthen passive safety surveillance through a training and mentoring program of HCPs in healthcare facilities in three SSA countries: Malawi, Côte d'Ivoire, and Democratic Republic of Congo (DRC). Project implementation was country-driven, led by the Ministry of Health via the national PV center or department, and was adapted to each country's needs. The implementation phase for each country was scheduled to last 18 months. At project start, low AE reporting rates reflected that awareness of PV practices was very low among HCPs in all three countries, even if a national PV center already existed. Malawi did not have a functional PV system nor a national PV center prior to the start of the initiative. After 18 months of PV training and mentoring of HCPs, passive safety surveillance was enhanced significantly as shown by the increased number of AE reports: from 22 during 2000-2016 to 228 in 18 months to 511 in 30 months in Malawi, and ~ 80% of AE reports from trained healthcare facilities in Côte d'Ivoire. In DRC, project implementation ended after 7 months because of the SARS-CoV-2 pandemic. Main challenges encountered were delayed AE report transmission (1-2 months, due mainly to remoteness of healthcare facilities and complex procedures for transmitting reports to the national PV center), delayed or no causality assessment due to lack of expertise and/or funding, negative perceptions among HCPs toward AE reporting, and difficulties in engaging public health programs with the centralized AE reporting processes. This pilot project has enabled the countries to train more HCPs, increased reporting of AEs and identified KPIs that could be flexibly replicated in each country. Country ownership and empowerment is essential to sustain these improvements and build a stronger AE reporting culture.


Assuntos
COVID-19 , Farmacovigilância , Humanos , Malaui , Projetos Piloto , SARS-CoV-2
6.
J Infect Dis ; 222(10): 1681-1691, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32687161

RESUMO

BACKGROUND: A previous RTS,S/AS01B vaccine challenge trial demonstrated that a 3-dose (0-1-7-month) regimen with a fractional third dose can produce high vaccine efficacy (VE) in adults challenged 3 weeks after vaccination. This study explored the VE of different delayed fractional dose regimens of adult and pediatric RTS,S/AS01 formulations. METHODS: A total of 130 participants were randomized into 5 groups. Four groups received 3 doses of RTS,S/AS01B or RTS,S/AS01E on a 0-1-7-month schedule, with the final 1 or 2 doses being fractional (one-fifth dose volume). One group received 1 full (month 0) and 1 fractional (month 7) dose of RTS,S/AS01E. Immunized and unvaccinated control participants underwent Plasmodium falciparum-infected mosquito challenge (controlled human malaria infection) 3 months after immunization, a timing chosen to potentially discriminate VEs between groups. RESULTS: The VE of 3-dose formulations ranged from 55% (95% confidence interval, 27%-72%) to 76% (48%-89%). Groups administered equivalent formulations of RTS,S/AS01E and RTS,S/AS01B demonstrated comparable VE. The 2-dose group demonstrated lower VE (29% [95% confidence interval, 6%-46%]). All regimens were well tolerated and immunogenic, with trends toward higher anti-circumsporozoite antibody titers in participants protected against infection. CONCLUSIONS: RTS,S/AS01E can provide VE comparable to an equivalent RTS,S/AS01B regimen in adults, suggesting a universal formulation may be considered. Results also suggest that the 2-dose regimen is inferior to the 3-dose regimens evaluated. CLINICAL TRIAL REGISTRATION: NCT03162614.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/prevenção & controle , Adolescente , Adulto , Feminino , Humanos , Esquemas de Imunização , Controle de Infecções , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Vacinação , Adulto Jovem
7.
N Engl J Med ; 369(26): 2481-91, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24328444

RESUMO

BACKGROUND: Commonly used trivalent vaccines contain one influenza B virus lineage and may be ineffective against viruses of the other B lineage. We evaluated the efficacy of a candidate inactivated quadrivalent influenza vaccine (QIV) containing both B lineages. METHODS: In this multinational, phase 3, observer-blinded study, we randomly assigned children 3 to 8 years of age, in a 1:1 ratio, to receive the QIV or a hepatitis A vaccine (control). The primary end point was influenza A or B confirmed by real-time polymerase chain reaction (rt-PCR). Secondary end points were rt-PCR-confirmed, moderate-to-severe influenza and rt-PCR-positive, culture-confirmed influenza. The vaccine efficacy and the effect of vaccination on daily activities and utilization of health care resources were assessed in the total vaccinated cohort (2584 children in each group) and the per-protocol cohort (2379 children in the QIV group and 2398 in the control group). RESULTS: In the total vaccinated cohort, 62 children in the QIV group (2.40%) and 148 in the control group (5.73%) had rt-PCR-confirmed influenza, representing a QIV efficacy of 59.3% (95% confidence interval [CI], 45.2 to 69.7), with efficacy against culture-confirmed influenza of 59.1% (97.5% CI, 41.2 to 71.5). For moderate-to-severe rt-PCR-confirmed influenza, the attack rate was 0.62% (16 cases) in the QIV group and 2.36% (61 cases) in the control group, representing a QIV efficacy of 74.2% (97.5% CI, 51.5 to 86.2). In the per-protocol cohort, the QIV efficacy was 55.4% (95% CI, 39.1 to 67.3), and the efficacy against culture-confirmed influenza 55.9% (97.5% CI, 35.4 to 69.9); the efficacy among children with moderate-to-severe influenza was 73.1% (97.5% CI, 47.1 to 86.3). The QIV was associated with reduced risks of a body temperature above 39°C and lower respiratory tract illness, as compared with the control vaccine, in the per-protocol cohort (relative risk, 0.29 [95% CI, 0.16 to 0.56] and 0.20 [95% CI, 0.04 to 0.92], respectively). The QIV was immunogenic against all four strains. Serious adverse events occurred in 36 children in the QIV group (1.4%) and in 24 children in the control group (0.9%). CONCLUSIONS: The QIV was efficacious in preventing influenza in children. (Funded by GlaxoSmithKline Biologicals; ClinicalTrials.gov number, NCT01218308.).


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Criança , Pré-Escolar , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vírus da Influenza B/isolamento & purificação , Vacinas contra Influenza/efeitos adversos , Influenza Humana/classificação , Influenza Humana/diagnóstico , Influenza Humana/imunologia , Masculino , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Método Simples-Cego , Vacinas de Produtos Inativados/imunologia
8.
Am J Respir Crit Care Med ; 188(4): 492-502, 2013 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-23306546

RESUMO

RATIONALE: Tuberculosis (TB) is a major cause of morbidity and mortality worldwide, thus there is an urgent need for novel TB vaccines. OBJECTIVES: We investigated a novel TB vaccine candidate, M72/AS01, in a phase IIa trial of bacille Calmette-Guérin-vaccinated, HIV-uninfected, and Mycobacterium tuberculosis (Mtb)-infected and -uninfected adults in South Africa. METHODS: Two doses of M72/AS01 were administered to healthy adults, with and without latent Mtb infection. Participants were monitored for 7 months after the first dose; cytokine production profiles, cell cycling, and regulatory phenotypes of vaccine-induced T cells were measured by flow cytometry. MEASUREMENTS AND MAIN RESULTS: The vaccine had a clinically acceptable safety profile, and induced robust, long-lived M72-specific T-cell and antibody responses. M72-specific CD4 T cells produced multiple combinations of Th1 cytokines. Analysis of T-cell Ki67 expression showed that most vaccination-induced T cells did not express Th1 cytokines or IL-17; these cytokine-negative Ki67(+) T cells included subsets of CD4 T cells with regulatory phenotypes. PD-1, a negative regulator of activated T cells, was transiently expressed on M72-specific CD4 T cells after vaccination. Specific T-cell subsets were present at significantly higher frequencies after vaccination of Mtb-infected versus -uninfected participants. CONCLUSIONS: M72/AS01 is clinically well tolerated in Mtb-infected and -uninfected adults, induces high frequencies of multifunctional T cells, and boosts distinct T-cell responses primed by natural Mtb infection. Moreover, these results provide important novel insights into how this immunity may be appropriately regulated after novel TB vaccination of Mtb-infected and -uninfected individuals.Clinical trial registered with www.clinicaltrials.gov (NCT 00600782).


Assuntos
Linfócitos T/imunologia , Vacinas contra a Tuberculose/imunologia , Adulto , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Interleucina-17/metabolismo , Masculino , África do Sul , Vacinas contra a Tuberculose/administração & dosagem , Adulto Jovem
9.
Lancet Infect Dis ; 24(1): 75-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37625434

RESUMO

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years. METHODS: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso. Children who had been enrolled in the initial 3-year trial when aged 5-17 months were initially randomly assigned individually to receive SMC with sulphadoxine-pyrimethamine and amodiaquine plus control vaccines, RTS,S/AS01E plus placebo SMC, or SMC plus RTS,S/AS01E. They continued to receive the same interventions until the age of 5 years. The primary trial endpoint was the incidence of clinical malaria over the 5-year trial period in both the modified intention-to-treat and per-protocol populations. Over the 5-year period, non-inferiority was defined as a 20% increase in clinical malaria in the RTS,S/AS01E-alone group compared with the SMC alone group. Superiority was defined as a 12% difference in the incidence of clinical malaria between the combined and single intervention groups. The study is registered with ClinicalTrials.gov, NCT04319380, and is complete. FINDINGS: In April, 2020, of 6861 children originally recruited, 5098 (94%) of the 5433 children who completed the initial 3-year follow-up were re-enrolled in the extension study. Over 5 years, the incidence of clinical malaria per 1000 person-years at risk was 313 in the SMC alone group, 320 in the RTS,S/AS01E-alone group, and 133 in the combined group. The combination of RTS,S/AS01E and SMC was superior to SMC (protective efficacy 57·7%, 95% CI 53·3 to 61·7) and to RTS,S/AS01E (protective efficacy 59·0%, 54·7 to 62·8) in preventing clinical malaria. RTS,S/AS01E was non-inferior to SMC (hazard ratio 1·03 [95% CI 0·95 to 1·12]). The protective efficacy of the combination versus SMC over the 5-year period of the study was very similar to that seen in the first 3 years with the protective efficacy of the combination versus SMC being 57·7% (53·3 to 61·7) and versus RTS/AS01E-alone being 59·0% (54·7 to 62·8). The comparable figures for the first 3 years of the study were 62·8% (58·4 to 66·8) and 59·6% (54·7 to 64·0%), respectively. Hospital admissions for WHO-defined severe malaria were reduced by 66·8% (95% CI 40·3 to 81·5), for malarial anaemia by 65·9% (34·1 to 82·4), for blood transfusion by 68·1% (32·6 to 84·9), for all-cause deaths by 44·5% (2·8 to 68·3), for deaths excluding external causes or surgery by 41·1% (-9·2 to 68·3), and for deaths from malaria by 66·8% (-2·7 to 89·3) in the combined group compared with the SMC alone group. No safety signals were detected. INTERPRETATION: Substantial protection against malaria was sustained over 5 years by combining seasonal malaria vaccination with seasonal chemoprevention, offering a potential new approach to malaria control in areas with seasonal malaria transmission. FUNDING: UK Joint Global Health Trials and PATH's Malaria Vaccine Initiative (through a grant from the Bill & Melinda Gates Foundation). TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Pré-Escolar , Mali/epidemiologia , Burkina Faso/epidemiologia , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Vacinação , Quimioprevenção , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle
10.
Lancet Infect Dis ; 24(9): 1025-1036, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38723650

RESUMO

BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Gana , Quênia/epidemiologia , Lactente , Masculino , Feminino , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Genótipo , Estudos Longitudinais , Eficácia de Vacinas , Plasmodium falciparum/imunologia , Plasmodium falciparum/genética , Malária/prevenção & controle
11.
J Clin Immunol ; 33(8): 1360-75, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24142232

RESUMO

PURPOSE: In this dose-finding Phase II study (NCT00621322), we evaluated the safety and immunogenicity of different formulations of the candidate tuberculosis vaccine containing the M72 antigen (10/20/40 µg doses) and the liposome-based AS01 Adjuvant System. We aimed to select the lowest-dose combination of M72 and AS01 that was clinically well tolerated with immunogenicity comparable to that of the previously tested M72/AS01B (40 µg) candidate vaccine. METHODS: Healthy PPD-positive (induration 3-10 mm) adults (18-45 years) in The Philippines were randomized (4:4:4:4:1:1) to receive 2 injections, 1 month apart, of M72/AS01B (40 µg), M72/AS01E (10 µg), M72/AS01E (20 µg), M72/AS02D (10 µg), M72/Saline (40 µg) or AS01B alone, and were followed up for 6 months. AS01E and AS02D contain half the quantities of the immunostimulants present in AS01B. AS02D is an oil-in-water emulsion. Vaccine selection was based on the CD4(+) T-cell responses at 1 month post vaccination. RESULTS: All formulations had a clinically acceptable safety profile with no vaccine-related serious adverse events reported. Two vaccinations of each adjuvanted M72 vaccine induced M72-specific CD4(+) T-cell and humoral responses persisting at 6 months post vaccination. No responses were observed with AS01B alone. One month post second vaccination, CD4(+) T-cell responses induced by each of the three M72/AS01 vaccine formulations were of comparable magnitudes, and all were significantly higher than those induced by M72/AS02D (10 µg) and M72/Saline. CONCLUSIONS: The formulation with the lowest antigen and adjuvant dose, M72/AS01E (10 µg), fulfilled our pre-defined selection criteria and has been selected for further clinical development.


Assuntos
Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adolescente , Adulto , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Relação Dose-Resposta Imunológica , Combinação de Medicamentos , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Vacinas contra a Tuberculose/efeitos adversos , Adulto Jovem
12.
medRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045387

RESUMO

Background: The only licensed malaria vaccine, RTS,S/AS01 E , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE). Methods: 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 E regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya. We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods in over 36K participant specimens. We performed a post hoc analysis of VE based on malaria infection status at first vaccination and force of infection. Results: We observed significant and comparable VE (25-43%, 95% CI union 9-53%) against first new infection for all four RTS,S/AS01 E regimens across both follow-up periods (12 and 20 months). Each RTS,S/AS01 E regimen significantly reduced the number of new infections in the 20-month follow-up period (control mean 4.1 vs. RTS,S/AS01 E mean 2.6-3.0). VE against first new infection was significantly higher in participants who were malaria-infected (68%; 95% CI, 50 to 80%) versus uninfected (37%; 95% CI, 23 to 48%) at the first vaccination (P=0.0053) and in participants experiencing greater force of infection between dose 1 and 3 (P=0.059). Conclusions: All tested dosing regimens blocked some infections to a similar degree. Improved VE in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. ( ClinicalTrials.gov number, NCT03276962 ).

13.
Lancet Infect Dis ; 22(9): 1329-1342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753316

RESUMO

BACKGROUND: Controlled infection studies in malaria-naive adults suggest increased vaccine efficacy for fractional-dose versus full-dose regimens of RTS,S/AS01. We report first results of an ongoing trial assessing different fractional-dose regimens in children, in natural exposure settings. METHODS: This open-label, phase 2b, randomised controlled trial is conducted at the Malaria Research Center, Agogo, Ashanti Region (Ghana), and the Kenya Medical Research Institute and the US Centers for Disease Control and Prevention site in Siaya County (Kenya). We enrolled children aged 5-17 months without serious acute or chronic illness who had previously received three doses of diphtheria, tetanus, pertussis, and hepatitis B vaccine and at least three doses of oral polio vaccine. Children were randomly assigned (1:1:1:1:1) using a web-based randomisation system with a minimisation procedure accounting for centre to receive rabies control vaccine (M012 schedule) or two full doses of RTS,S/AS01E at month 0 and month 1, followed by either full doses at months 2 and 20 (group R012-20 [standard regimen]), full doses at months 2, 14, 26, and 38 (R012-14), fractional doses at months 2, 14, 26, and 38 (Fx012-14), or fractional doses at months 7, 20, and 32 (Fx017-20). The fractional doses were administered as one fifth (0·1 mL) of the full RTS,S dose (0·5 mL) after reconstitution. All vaccines were administered by intramuscular injection in the left deltoid. The primary outcome was occurrence of clinical malaria cases from month 2·5 until month 14 for the Fx012-14 group versus the pooled R012-14 and R012-20 groups in the per-protocol set. We assessed incremental vaccine efficacy of the Fx012-14 group versus the pooled R012-14 and R012-20 group over 12 months after dose three. Safety was assessed in all children who received at least one vaccine dose. This trial is registered with ClinicalTrials.gov, NCT03276962. FINDINGS: Between Sept 28, 2017, and Sept 25, 2018, 2157 children were enrolled, of whom 1609 were randomly assigned to a treatment group (322 to each RTS,S/AS01E group and 321 to the rabies vaccine control group). 1500 children received at least one study vaccine dose and the per-protocol set comprised 1332 children. Over 12 months after dose three, the incremental vaccine efficacy in the Fx012-14 group versus the pooled R012-14 and R12-20 groups was -21% (95% CI -57 to 7; p=0·15). Up to month 21, serious adverse events occurred in 48 (16%) of 298 children in the R012-20 group, 45 (15%) of 294 in the R012-14 group, 47 (15%) of 304 in the Fx012-14 group, 62 (20%) of 311 in the Fx017-20 group, and 71 (24%) of 293 in the control group, with no safety signals observed. INTERPRETATION: The Fx012-14 regimen was not superior to the standard regimen over 12 months after dose three. All RTS,S/AS01E regimens provided substantial, similar protection against clinical malaria, suggesting potential flexibility in the recommended dosing regimen and schedule. This, and the effect of annual boosters, will be further evaluated through 50 months of follow-up. FUNDING: GlaxoSmithKline Biologicals; PATH's Malaria Vaccine Initiative.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Vacina Antirrábica , Adulto , Criança , Gana , Humanos , Quênia
14.
Malar J ; 10: 224, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21816029

RESUMO

BACKGROUND: GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative are working in partnership to develop a malaria vaccine to protect infants and children living in malaria endemic regions of sub-Saharan Africa, which can be delivered through the Expanded Programme on Immunization. The RTS,S/AS candidate vaccine has been evaluated in multiple phase I/II studies and shown to have a favourable safety profile and to be well-tolerated in both adults and children. This paper details the design of the phase III multicentre efficacy trial of the RTS,S/AS01 malaria vaccine candidate, which is pivotal for licensure and policy decision-making. METHODS: The phase III trial is a randomized, controlled, multicentre, participant- and observer-blind study on-going in 11 centres associated with different malaria transmission settings in seven countries in sub-Saharan Africa. A minimum of 6,000 children in each of two age categories (6-12 weeks, 5-17 months) have been enrolled. Children were randomized 1:1:1 to one of three study groups: (1) primary vaccination with RTS,S/AS01 and booster dose of RTS,S/AS01; (2) primary vaccination with RTS,S/AS01 and a control vaccine at time of booster; (3) primary vaccination with control vaccine and a control vaccine at time of booster. Primary vaccination comprises three doses at monthly intervals; the booster dose is administered at 18 months post-primary course. Subjects will be followed to study month 32. The co-primary objectives are the evaluation of efficacy over one year post-dose 3 against clinical malaria when primary immunization is delivered at: (1) 6-12 weeks of age, with co-administration of DTPwHepB/Hib antigens and OPV; (2) 5-17 months of age. Secondary objectives include evaluation of vaccine efficacy against severe malaria, anaemia, malaria hospitalization, fatal malaria, all-cause mortality and other serious illnesses including sepsis and pneumonia. Efficacy of the vaccine against clinical malaria under different transmission settings, the evolution of efficacy over time and the potential benefit of a booster will be evaluated. In addition, the effect of RTS,S/AS01 vaccination on growth, and the safety and immunogenicity in HIV-infected and malnourished children will be assessed. Safety of the primary course of immunization and the booster dose will be documented in both age categories. CONCLUSIONS: This pivotal phase III study of the RTS,S/AS01 candidate malaria vaccine in African children was designed and implemented by the Clinical Trials Partnership Committee. The study will provide efficacy and safety data to fulfil regulatory requirements, together with data on a broad range of endpoints that will facilitate the evaluation of the public health impact of the vaccine and will aid policy and implementation decisions. TRIAL REGISTRATION: Clinicaltrials.gov NCT00866619.


Assuntos
Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , África , África Subsaariana , Método Duplo-Cego , Aprovação de Drogas , Humanos , Imunização Secundária/métodos , Lactente , Malária/imunologia , Vacinas Antimaláricas/efeitos adversos , Resultado do Tratamento , Vacinação/métodos
15.
Malar J ; 10: 223, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21816032

RESUMO

BACKGROUND: A pivotal phase III study of the RTS,S/AS01 malaria candidate vaccine is ongoing in several research centres across Africa. The development and establishment of quality systems was a requirement for trial conduct to meet international regulatory standards, as well as providing an important capacity strengthening opportunity for study centres. METHODS: Standardized laboratory methods and quality assurance processes were implemented at each of the study centres, facilitated by funding partners. RESULTS: A robust protocol for determination of parasite density based on actual blood cell counts was set up in accordance with World Health Organization recommendations. Automated equipment including haematology and biochemistry analyzers were put in place with standard methods for bedside testing of glycaemia, base excess and lactacidaemia. Facilities for X-rays and basic microbiology testing were also provided or upgraded alongside health care infrastructure in some centres. External quality assurance assessment of all major laboratory methods was established and method qualification by each laboratory demonstrated. The resulting capacity strengthening has ensured laboratory evaluations are conducted locally to the high standards required in clinical trials. CONCLUSION: Major efforts by study centres, together with support from collaborating parties, have allowed standardized methods and robust quality assurance processes to be put in place for the phase III evaluation of the RTS, S/AS01 malaria candidate vaccine. Extensive training programmes, coupled with continuous commitment from research centre staff, have been the key elements behind the successful implementation of quality processes. It is expected these activities will culminate in healthcare benefits for the subjects and communities participating in these trials. TRIAL REGISTRATION: Clinicaltrials.gov NCT00866619.


Assuntos
Pesquisa Biomédica/normas , Técnicas de Laboratório Clínico/métodos , Coleta de Dados/normas , Vacinas Antimaláricas/imunologia , Malária/diagnóstico , Parasitemia/diagnóstico , Garantia da Qualidade dos Cuidados de Saúde/métodos , África , Automação/métodos , Automação/normas , Sangue/parasitologia , Glicemia/análise , Técnicas de Laboratório Clínico/normas , Humanos , Ácido Láctico/sangue , Malária/parasitologia , Parasitemia/parasitologia , Radiografia/métodos , Radiografia/normas
16.
J Infect Dis ; 201(4): 580-9, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20078211

RESUMO

BACKGROUND: Patterns of expressed genes in the peripheral blood mononuclear cells of persons who were receiving RTS,S/AS01 or RTS,S/AS02 malaria vaccine and were undergoing experimental challenge with mosquito-borne falciparum malaria were examined to identify markers associated with protection. METHODS: Thirty-nine vaccine recipients were assessed at study entry; on the day of the third vaccination; at 24 h, 72 h, and 2 weeks after vaccination; and on day 5 after challenge. Of 39 vaccine recipients, 13 were protected and 26 were not. Eleven vaccine recipients exhibited delayed onset of parasitemia. All infectivity control subjects developed parasitemia. Prediction analysis of microarrays identified genes corresponding with protection. Gene set enrichment analysis identified sets of genes associated with protection after the third vaccination and before challenge. RESULTS: After the third vaccination and before challenge, differential expression of genes in the immunoproteasome pathway distinguished protected and nonprotected persons. At 5 days after challenge, differential expression of genes associated with programmed cell death distinguished between subjects protected and not protected from malaria blood-stage infection. CONCLUSIONS: The up-regulation of genes associated with the efficient processing of major histocompatibility complex peptides suggests a potential role of the vaccine in conferring major histocompatibility complex class 1-mediated protection and may represent a useful surrogate marker of vaccine efficacy without the need for challenge.


Assuntos
Complexo Principal de Histocompatibilidade/imunologia , Vacinas Antimaláricas/imunologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Adjuvantes Imunológicos/administração & dosagem , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Células Cultivadas , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Leucócitos Mononucleares/imunologia , Complexo Principal de Histocompatibilidade/genética , Vacinas Antimaláricas/administração & dosagem , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos
17.
J Immunol Methods ; 492: 112940, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33493551

RESUMO

Vaccinology is confronted with diseases for which the control of T-cell responses by the vaccine is essential. Among the assays that have been designed to assess T-cell responses, intracellular cytokine staining (ICS) combined with flow cytometry is well-suited in the frame of clinical trials. This assay can be used starting from isolated peripheral blood mononuclear cells (PBMC) or from whole blood (WB), but firm equivalence between the two sample preparation methods has yet to be established. Therefore, we compared both methods by analyzing the frequency of antigen-specific CD4+ T cells expressing at least two of four immune markers in human samples taken from two independent clinical trials (NCT00397943 and NCT00805389) with a qualified ICS assay. In the first study, M72-specific CD4+ T-cell responses were analyzed using WB-ICS and PBMC-ICS in 293 samples. Of these, 128 were double positive (value ≥ lower limit of quantification [LLOQ] with both methods), 130 were double negative and only 35 sample results were discordant, leading to an overall agreement of 88.05%. When analyzing the 128 double positive samples, it was found that the geometric mean of ratios (GMR) for paired observations was 0.98, which indicates a very good alignment between the two methods. The Deming regression fitted between the methods also showed a good correlation with an estimated slope being 1.1085. In the second study, HBsAg-specific CD4+ T-cell responses were analyzed in 371 samples. Of these, 100 were double positive, 195 were double negative and 76 sample results were discordant, leading to an overall agreement of 79.51%. The GMR for paired observations was equal to 1.20, caused by a trend for overestimation in favor of the WB samples in the very high frequencies. The estimated slope of the Deming regression was 1.3057. In conclusion, we demonstrated that WB and PBMC methods of sample collection led to statistically concordant ICS results, indicating that WB-ICS is a suitable alternative to PBMC-ICS to analyze clinical trial samples.


Assuntos
Sangue/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/análise , Manejo de Espécimes/métodos , Adolescente , Adulto , Sangue/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Estudos de Viabilidade , Feminino , Citometria de Fluxo/métodos , Voluntários Saudáveis , Vacinas contra Hepatite B/administração & dosagem , Humanos , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Vacinas contra a Tuberculose/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Adulto Jovem
18.
Vaccine ; 39(43): 6398-6406, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34593270

RESUMO

BACKGROUND: We previously demonstrated that RTS,S/AS01B and RTS,S/AS01E vaccination regimens including at least one delayed fractional dose can protect against Plasmodium falciparum malaria in a controlled human malaria infection (CHMI) model, and showed inferiority of a two-dose versus three-dose regimen. In this follow-on trial, we evaluated whether fractional booster vaccination extended or induced protection in previously protected (P-Fx) or non-protected (NP-Fx) participants. METHODS: 49 participants (P-Fx: 25; NP-Fx: 24) received a fractional (1/5th dose-volume) RTS,S/AS01E booster 12 months post-primary regimen. They underwent P. falciparum CHMI three weeks later and were then followed for six months for safety and immunogenicity. RESULTS: Overall vaccine efficacy against re-challenge was 53% (95% CI: 37-65%), and similar for P-Fx (52% [95% CI: 28-68%]) and NP-Fx (54% [95% CI: 29-70%]). Efficacy appeared unaffected by primary regimen or previous protection status. Anti-CS (repeat region) antibody geometric mean concentrations (GMCs) increased post-booster vaccination. GMCs were maintained over time in primary three-dose groups but declined in the two-dose group. Protection after re-challenge was associated with higher anti-CS antibody responses. The booster was well-tolerated. CONCLUSIONS: A fractional RTS,S/AS01E booster given one year after completion of a primary two- or three-dose RTS,S/AS01 delayed fractional dose regimen can extend or induce protection against CHMI. CLINICAL TRIAL REGISTRATION: NCT03824236. linked to this article can be found on the Research Data as well as Figshare https://figshare.com/s/ee025150f9d1ac739361.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Vacinação
19.
Drug Saf ; 43(6): 583-593, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239447

RESUMO

INTRODUCTION: Pharmacovigilance (PV) systems to monitor drug and vaccine safety are often inadequate in sub-Saharan Africa. In Malawi, a PV enhancement initiative was introduced to address major barriers to PV. OBJECTIVE: The objective of this initiative was to improve reporting of adverse events (AEs) by strengthening passive safety surveillance via PV training and mentoring of local PV stakeholders and healthcare providers (HCPs) at their own healthcare facilities (HCFs). METHODS: An 18-month PV training and mentoring programme was implemented in collaboration with national stakeholders, and in partnership with the Ministry of Health, GSK and PATH. Two-day training was provided to Expanded Programme on Immunisation coordinators, identified as responsible for AE reporting, and four National Regulatory Authority representatives. Abridged PV training and mentoring were provided regularly to HCPs. Support was given in upgrading the national PV system. Key performance indicators included the number of AEs reported, transmission of AE forms, completeness of reports, serious AEs reported and timeliness of recording into VigiFlow. RESULTS: In 18 months, 443 HCPs at 61 HCFs were trained. The number of reported AEs increased from 22 (January 2000 to October 2016) to 228 (November 2016 to May 2018), enabling Malawi to become a member of the World Health Organization Programme for International Drug Monitoring. Most (98%) AE report forms contained mandatory information on reporter, event, patient and product, but under 1% were transmitted to the national PV office within 48 h. CONCLUSION: Regular PV training and mentoring of HCPs were effective in enhancing passive safety surveillance in Malawi, but the transmission of reports to the national PV centre requires further improvement.


When a medicine or vaccine is made available for use, healthcare organisations maintain regular surveillance to confirm that the medicinal product is safe and effective. The efficiency of this surveillance depends mainly on the healthcare system and medical practices in place in each country. An important element is an effective procedure for identifying and reporting any unwanted medical occurrences (adverse events) after taking a medicinal product. In countries where regular safety surveillance has not been maintained, it is important to train and mentor healthcare providers on the need to be aware of adverse events and the importance of adhering to safety reporting procedures. GSK and partners conducted a pilot project in Malawi with the aim of improving adverse event reporting by training and mentoring healthcare providers. Training sessions and continuous mentoring were conducted over 18 months, involving 443 healthcare providers at 61 healthcare facilities. There was a large increase in the number of adverse events reported: from 22 in the 16-year period before the project started to 228 during the 18-month project period. This project showed that the training and mentoring programme for healthcare providers was effective in increasing the number of adverse events reported. This enabled Malawi to join the World Health Organization's international safety reporting scheme. Other countries facing similar challenges in safety surveillance systems could benefit from a similar approach.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Pessoal de Saúde/educação , Farmacovigilância , África Subsaariana , Pessoal de Saúde/organização & administração , Humanos , Malaui , Tutoria , Projetos Piloto
20.
BMJ Open ; 10(9): e035433, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933955

RESUMO

INTRODUCTION: Seasonal malaria chemoprevention (SMC), with sulphadoxine-pyrimethamine plus amodiaquine (SP+AQ) is effective but does not provide complete protection against clinical malaria. The RTS,S/AS01E malaria vaccine provides a high level of protection shortly after vaccination, but this wanes rapidly. Such a vaccine could be an alternative or additive to SMC. This trial aims to determine whether seasonal vaccination with RTS,S/AS01E vaccine could be an alternative to SMC and whether a combination of the two interventions would provide added benefits. METHODS AND ANALYSIS: This is an individually randomised, double-blind, placebo-controlled trial. 5920 children aged 5-17 months were enrolled in April 2017 in Mali and Burkina Faso. Children in group 1 received three priming doses of RTS,S/AS01E vaccine before the start of the 2017 malaria transmission season and a booster dose at the beginning of two subsequent transmission seasons. In addition, they received SMC SP+AQ placebo on four occasions each year. Children in group 2 received three doses of rabies vaccine in year 1 and hepatitis A vaccine in years 2 and 3 together with four cycles of SMC SP+AQ each year. Children in group 3 received RTS,S/AS01E vaccine and four courses of SMC SP+AQ. Incidence of clinical malaria is determined by case detection at health facilities. Weekly active surveillance for malaria is undertaken in a randomly selected subset of children. The prevalence of malaria is measured in surveys at the end of each transmission season. The primary endpoint is the incidence of clinical malaria confirmed by a positive blood film with a minimum parasite density of 5000 /µL. Primary analysis will be by modified intention to treat defined as children who have received the first dose of the malaria or control vaccine. ETHICS AND DISSEMINATION: The protocol was approved by the national ethics committees of Mali and Burkina Faso and the London School of Hygiene and Tropical Medicine. The results will be presented to all stakeholders and published in open access journals. TRIAL REGISTRATION NUMBER: NCT03143218; Pre-results.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Malária , Antimaláricos/uso terapêutico , Burkina Faso/epidemiologia , Quimioprevenção , Criança , Ensaios Clínicos Fase III como Assunto , Humanos , Lactente , Londres , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mali , Ensaios Clínicos Controlados Aleatórios como Assunto , Estações do Ano , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA