Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(3): 1694-1703, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997193

RESUMO

The amygdala, a critical brain region responsible for emotional behavior, is crucially involved in the regulation of the effects of stress on emotional behavior. In the mammalian forebrain, gastrin-releasing peptide (GRP), a 27-amino-acid mammalian neuropeptide, which is a homolog of the 14-amino-acid amidated amphibian peptide bombesin, is highly expressed in the amygdala. The levels of GRP are markedly increased in the amygdala after acute stress; therefore, it is known as a stress-activated modulator. To determine the role of GRP in emotional behavior under stress, we conducted some behavioral and biochemical experiments with GRP-knockout (KO) mice. GRP-KO mice exhibited a longer freezing response than wild-type (WT) littermates in both contextual and auditory fear (also known as threat) conditioning tests only when they were subjected to acute restraint stress 20 min before the conditioning. To identify the critical neural circuits associated with the regulation of emotional memory by GRP, we conducted Arc/Arg3.1-reporter mapping in the amygdala with an Arc-Venus reporter transgenic mouse line. In the amygdalostriatal transition area (AST) and the lateral side of the basal nuclei, fear conditioning after restraint stress increased neuronal activity significantly in WT mice, and GRP KO was found to negate this potentiation only in the AST. These results indicate that the GRP-activated neurons in the AST are likely to suppress excessive fear expression through the regulation of downstream circuits related to fear learning following acute stress.


Assuntos
Bombesina , Medo , Tonsila do Cerebelo/metabolismo , Animais , Bombesina/metabolismo , Bombesina/farmacologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Peptídeo Liberador de Gastrina/metabolismo , Peptídeo Liberador de Gastrina/farmacologia , Mamíferos/metabolismo , Camundongos , Camundongos Knockout
2.
Eur J Neurosci ; 40(8): 3136-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25131300

RESUMO

The N-methyl-D-aspartate receptor (NMDAR) plays various physiological and pathological roles in neural development, synaptic plasticity and neuronal cell death. It is composed of two GluN1 and two GluN2 subunits and, in the neonatal hippocampus, most synaptic NMDARs are GluN2B-containing receptors, which are gradually replaced with GluN2A-containing receptors during development. Here, we examined whether GluN2A could be substituted for GluN2B in neural development and functions by analysing knock-in (KI) mice in which GluN2B is replaced with GluN2A. The KI mutation was neonatally lethal, although GluN2A-containing receptors were transported to the postsynaptic membrane even without GluN2B and functional at synapses of acute hippocampal slices of postnatal day 0, indicating that GluN2A-containing NMDARs could not be substituted for GluN2B-containing NMDARs. Importantly, the synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluA1 was increased, and the transmembrane AMPAR regulatory protein, which is involved in AMPAR synaptic trafficking, was increased in KI mice. Although the regulation of AMPARs by GluN2B has been reported in cultured neurons, we showed here that AMPAR-mediated synaptic responses were increased in acute KI slices, suggesting differential roles of GluN2A and GluN2B in AMPAR expression and trafficking in vivo. Taken together, our results suggest that GluN2B is essential for the survival of animals, and that the GluN2B-GluN2A switching plays a critical role in synaptic integration of AMPARs through regulation of GluA1 in the whole animal.


Assuntos
Encéfalo/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Animais Recém-Nascidos , Técnicas de Introdução de Genes , Camundongos , Transporte Proteico , Receptores de N-Metil-D-Aspartato/genética
3.
EMBO Mol Med ; 13(4): e12574, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33656268

RESUMO

Genomic defects with large effect size can help elucidate unknown pathologic architecture of mental disorders. We previously reported on a patient with schizophrenia and a balanced translocation between chromosomes 4 and 13 and found that the breakpoint within chromosome 4 is located near the LDB2 gene. We show here that Ldb2 knockout (KO) mice displayed multiple deficits relevant to mental disorders. In particular, Ldb2 KO mice exhibited deficits in the fear-conditioning paradigm. Analysis of the amygdala suggested that dysregulation of synaptic activities controlled by the immediate early gene Arc is involved in the phenotypes. We show that LDB2 forms protein complexes with known transcription factors. Consistently, ChIP-seq analyses indicated that LDB2 binds to > 10,000 genomic sites in human neurospheres. We found that many of those sites, including the promoter region of ARC, are occupied by EGR transcription factors. Our previous study showed an association of the EGR family genes with schizophrenia. Collectively, the findings suggest that dysregulation in the gene expression controlled by the LDB2-EGR axis underlies a pathogenesis of subset of mental disorders.


Assuntos
Esquizofrenia , Animais , Medo , Expressão Gênica , Humanos , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Knockout , Esquizofrenia/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA