RESUMO
The present studies were conducted to evaluate key serum proteins and other components that mediate anchorage-independent growth (3-D growth) of LNCaP prostate cancer cells as spheroids. The cells were cultured on ultra-low attachment plates in the absence and presence of fetuin-A and with or without extracellular vesicles. The data show that fetuin-A (alpha 2HS glycoprotein) is the serum protein that mediates 3-D growth in these cells. It does so by sequestering extracellular vesicles of various sizes on the surfaces of rounded cells that grow as spheroids. These vesicles in turn transmit growth signals such as the activation of AKT and MAP kinases in a pattern that differs from the activation of these key growth signaling pathways in adherent and spread cells growing in 2-D. In the process of orchestrating the movement and disposition of extracellular vesicles on these cells, fetuin-A is readily internalized in adhered and spread cells but remains on the surfaces of non-adherent cells. Taken together, our studies suggest the presence of distinct signaling domains or scaffolding platforms on the surfaces of prostate tumor cells growing in 3-D compared to 2-D.
Assuntos
Vesículas Extracelulares , Neoplasias da Próstata , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Transdução de Sinais , alfa-2-Glicoproteína-HS/metabolismo , alfa-Fetoproteínas/metabolismoRESUMO
The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.
Assuntos
Carcinógenos Ambientais/efeitos adversos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Animais , Progressão da Doença , Exposição Ambiental/efeitos adversos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , HumanosRESUMO
Intratracheal infusion of 2-chloroethyl ethyl sulfide (CEES), a mustard gas analog and a chemical warfare agent is known to cause massive damage to lung. The purpose of this study was to determine whether intratracheal CEES infusion causes neuronal damage. Histological, immunohistochemical, and Western blot studies indicated that CEES treatment caused dose-dependent increases in blood cell aggregation, microglial cell number, microglial activation, and brain inflammation. In addition, an increased expression of α-synuclein and a decreased expression of the dopamine transporter were observed. The results indicate that intratracheal CEES infusion is associated with changes in brain morphology mediated by an increase in α-synuclein expression, leading to neurotoxicity in a guinea pig model. These changes may be mediated by oxidative stress. Furthermore, the present study indicates for the first time that intratracheal infusion of a single dose of CEES can cause neuroinflammation, which may lead to neurological disorders in later part of life.
Assuntos
Lesões Encefálicas/induzido quimicamente , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/análogos & derivados , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Substâncias para a Guerra Química/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Eritrócitos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cobaias , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Gás de Mostarda/farmacocinética , Gás de Mostarda/toxicidade , Estresse Oxidativo , Permeabilidade , Distribuição Tecidual , Traqueia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
Heterozygosity for a t haplotype (t) in male mice results in distorted transmission (TRD) of the t-bearing chromosome 17 homolog to their offspring. However, homozygosity for t causes male sterility, thus limiting the spread of t through the population at large. The Ca(2+)-dependent sperm tail curvature phenotypes, "fishhook", where abnormally high levels of sperm exhibit sharp bends in the midpiece, and "curlicue", where motile sperm exhibit a chronic negative curving of the entire tail, have been tightly linked to t-associated male TRD and sterility traits, respectively. Genetic studies have indicated that homozygosity for the t allele of Dnahc8, an axonemal gamma-type dynein heavy chain (gammaDHC) gene, is partially responsible for expression of "curlicue"; however, its involvement in "fishhook"/TRD, if any, is unknown. Here we report that the major isoform of DNAHC8 is copiously expressed, carries an extended N-terminus and full-length C-terminus, and is stable and equally abundant in both testis and sperm from +/+ and t/t animals. By in silico analysis we also demonstrate that at least three of the seventeen DNAHC8(t) mutations at highly conserved positions in wild-type DHCs may be capable of substantially altering normal DNAHC8 function. Interestingly, DNAHC8 is confined to the principal piece of the sperm tail. The combined results of this study suggest possible mechanisms of DNAHC8(t) dysfunction and involvement in "curlicue", and support the hypothesis that "curlicue" is a multigenic phenomenon. They also demonstrate that the accelerated "fishhook" phenotype of sperm from +/t males is not directly linked to DNAHC8(t) dysfunction.
Assuntos
Dineínas/química , Dineínas/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Cauda do Espermatozoide/metabolismo , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Dineínas do Axonema , Sequência de Bases , DNA Complementar/genética , Dineínas/metabolismo , Haplótipos , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fenótipo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Cauda do Espermatozoide/ultraestrutura , Região do Complexo-t do GenomaRESUMO
Homozygosity for the t haplotype allele of the testis-specifically expressed axonemal dynein heavy chain (axDHC) gene, Dnahc8, has been linked to male sterility resulting from aberrant sperm motility. However, the near absence of Dnahc8 expression has been associated with male sterility resulting from an early breakdown in sperm flagellar development. Although axDHCs are integral participants in flagellar motility, a role in flagellar morphogenesis has never been attributed to a member of this highly conserved gene family. To gain a better understanding of this presumed novel role for Dnahc8, we have studied the organization and expression of full-length Dnahc8(+) and Dnahc8(t) transcripts. Our results demonstrate the existence of at least two alternatively spliced, testis-specific Dnahc8 mRNAs transcribed from both the + and t alleles. A highly expressed isoform encodes a protein with significant homology nearly throughout to the gamma heavy chain of the Chlamydomonas axonemal outer arm dynein, while a more poorly expressed isoform codes for a protein whose sequence diverges significantly from that of other axDHCs at both its N and C termini. While in situ hybridization studies demonstrate that both mRNA species accumulate exclusively in mid to late spermatocytes, each isoform shows spatial independence. Additional experiments demonstrate the existence of a testis-expressed mRNA with no significant open reading frame, a portion of which is antisense to the 5'-untranslated region of the highly divergent Dnahc8 isoform. The cumulative data imply that Dnahc8 may have acquired functional plasticity in the testis through the tightly controlled expression of both typical and unusual isoforms.