Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Curr Issues Mol Biol ; 46(3): 1757-1767, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38534731

RESUMO

Dual immunoglobulin domain-containing cell adhesion molecule (DICAM) is a type I transmembrane protein that presents in various cells including renal tubular cells. This study evaluated the expression and protective role of DICAM in renal tubular cell injury. HK-2 cells were incubated and treated with lipopolysaccharide (LPS, 30 µg/mL) or hydrogen peroxide (H2O2, 100 µM) for 24 h. To investigate the effect of the gene silencing of DICAM, small interfering RNA of DICAM was used. Additionally, to explain its role in cellular response to injury, DICAM was overexpressed using an adenoviral vector. DICAM protein expression levels significantly increased following treatment with LPS or H2O2 in HK-2 cells. In response to oxidative stress, DICAM showed an earlier increase (2-4 h following treatment) than neutrophil gelatinase-associated lipocalin (NGAL) (24 h following treatment). DICAM gene silencing increased the protein expression of inflammation-related markers, including IL-1ß, TNF-α, NOX4, integrin ß1, and integrin ß3, in H2O2-induced HK-2 cell injury. Likewise, in the LPS-induced HK-2 cell injury, DICAM knockdown led to a decrease in occludin levels and an increase in integrin ß3, IL-1ß, and IL-6 levels. Furthermore, DICAM overexpression followed by LPS-induced HK-2 cell injury resulted in an increase in occludin levels and a decrease in integrin ß1, integrin ß3, TNF-α, IL-1ß, and IL-6 levels, suggesting an alleviating effect on inflammatory responses. DICAM was elevated in the early stage of regular tubular cell injury and may protect against renal tubular injury through its anti-inflammatory properties. DICAM has a potential as an early diagnostic marker and therapeutic target for renal cell injury.

2.
Anal Chem ; 95(2): 1184-1192, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36602057

RESUMO

Early diagnosis of hepatocellular carcinoma (HCC) is difficult; the lack of convenient biomarker-based diagnostic modalities renders high-risk HCC patients burdened by life-long periodical examinations. Here, a new chemical biopsy approach was developed for noninvasive diagnosis of HCC using urine samples. Bioinformatic screening for tumor suppressors yielded glycine N-methyltransferase (GNMT) as a biomarker with clinical relevance to HCC tumorigenesis. A liquid chromatography-mass spectrometry (LC-MS)-based chemical biopsy detecting nonradioactive 13C-sarcosine from 13C-glycine was designed to noninvasively assess liver GNMT activity extrahepatically. 13C-Sarcosine showed a strong correlation with GNMT in normal and cancerous liver cells. In an autochthonous animal model developing visible cancer nodules at 17 weeks, the urinary 13C-sarcosine chemical biopsy exhibited notable changes as early as 8 weeks, showing significant correlations with liver GNMT and molecular pathological changes. Our chemical biopsy approach should facilitate early and noninvasive diagnosis of HCC, with direct relevance to tumorigenesis, which can be straightforwardly applied to other diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Glicina N-Metiltransferase , Sarcosina , Fígado/patologia , Transformação Celular Neoplásica/patologia , Carcinogênese/patologia
3.
Biochem Biophys Res Commun ; 610: 182-187, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468422

RESUMO

Rv1211 is a conserved hypothetical protein in Mycobacterium tuberculosis and is required for the growth and pathogenesis of the bacteria. The protein has been suggested as a calmodulin-like calcium-binding protein with an EF-hand motif and as a target of trifluoperazine, a calmodulin antagonist in eukaryotes that inhibits mycobacterial growth. Here, we expressed the recombinant protein of Rv1211 and performed structural and biochemical studies of Rv1211 and its interaction with Ca2+ or trifluoperazine. Surprisingly, Rv1211 exhibited an elution property typical of a natively unfolded protein. Subsequent circular dichroism experiments with temperature elevation and trifluoroethanol treatment showed that Rv1211 has unfolded structure. Additional NMR experiment confirmed the unfolded state of the protein and further showed that it does not bind to Ca2+. Still, Rv1211 did bind to trifluoperazine, as evidenced by the two-dimensional NMR spectra of 15N-labeled Rv1211. However, there were no peak shifts upon binding, showing that Rv1211 retained its unfolded state even after the trifluoperazine binding. The residues involved in the binding were clustered in the C-terminal region, as identified by the sequence assignment. Isothermal titration calorimetry showed that the Kd of trifluoperazine-Rv1211 binding is 41 µM and that the stoichiometry is 1 : 2 (Rv1211: trifluoperazine). Our results argue against the suggestion of Rv1211 as a Ca2+-binding calmodulin-like protein, and show that Rv1211 is a natively unfolded protein that binds to trifluoperazine. In addition, our results suggest the evidence of the "Fuzziness" in the Rv1211-trifluoperazine interaction that differs from the conventional binding-induced folding of natively unfolded proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Mycobacterium tuberculosis , Cálcio/metabolismo , Calmodulina/metabolismo , Motivos EF Hand , Proteínas Intrinsicamente Desordenadas/metabolismo , Mycobacterium tuberculosis/metabolismo , Trifluoperazina/química , Trifluoperazina/farmacologia
4.
Mol Cell ; 55(6): 829-842, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25201414

RESUMO

Breakpoint junctions of the chromosomal translocations that occur in human cancers display hallmarks of nonhomologous end-joining (NHEJ). In mouse cells, translocations are suppressed by canonical NHEJ (c-NHEJ) components, which include DNA ligase IV (LIG4), and instead arise from alternative NHEJ (alt-NHEJ). Here we used designer nucleases (ZFNs, TALENs, and CRISPR/Cas9) to introduce DSBs on two chromosomes to study translocation joining mechanisms in human cells. Remarkably, translocations were altered in cells deficient for LIG4 or its interacting protein XRCC4. Translocation junctions had significantly longer deletions and more microhomology, indicative of alt-NHEJ. Thus, unlike mouse cells, translocations in human cells are generated by c-NHEJ. Human cancer translocations induced by paired Cas9 nicks also showed a dependence on c-NHEJ, despite having distinct joining characteristics. These results demonstrate an unexpected and striking species-specific difference for common genomic rearrangements associated with tumorigenesis.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligases/genética , Proteínas de Ligação a DNA/genética , Desoxirribonucleases/fisiologia , Translocação Genética/genética , Animais , Cromossomos Humanos , DNA Ligase Dependente de ATP , Humanos , Camundongos , Deleção de Sequência , Especificidade da Espécie , Células Tumorais Cultivadas
5.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575914

RESUMO

Recently, the role of kidney pericytes in kidney fibrosis has been investigated. This study aims to evaluate the effect of paricalcitol on hypoxia-induced and TGF-ß1-induced injury in kidney pericytes. The primary cultured pericytes were pretreated with paricalcitol (20 ng/mL) for 90 min before inducing injury, and then they were exposed to TGF-ß1 (5 ng/mL) or hypoxia (1% O2 and 5% CO2). TGF-ß1 increased α-SMA and other fibrosis markers but reduced PDGFRß expression in pericytes, whereas paricalcitol reversed the changes. Paricalcitol inhibited the TGF-ß1-induced cell migration of pericytes. Hypoxia increased TGF-ß1, α-SMA and other fibrosis markers but reduced PDGFRß expression in pericyte, whereas paricalcitol reversed them. Hypoxia activated the HIF-1α and downstream molecules including prolyl hydroxylase 3 and glucose transporter-1, whereas paricalcitol attenuated the activation of the HIF-1α-dependent molecules and TGF-ß1/Smad signaling pathways in hypoxic pericytes. The gene silencing of HIF-1α vanished the hypoxia-induced TGF-ß1, α-SMA upregulation, and PDGFRß downregulation. The effect of paricalcitol on the HIF-1α-dependent changes of fibrosis markers was not significant after the gene silencing of HIF-1α. In addition, hypoxia aggravated the oxidative stress in pericytes, whereas paricalcitol reversed the oxidative stress by increasing the antioxidant enzymes in an HIF-1α-independent manner. In conclusion, paricalcitol improved the phenotype changes of pericyte to myofibroblast in TGF-ß1-stimulated pericytes. In addition, paricalcitol improved the expression of fibrosis markers in hypoxia-exposed pericytes both in an HIF-1α-dependent and independent manner.


Assuntos
Ergocalciferóis/farmacologia , Hipóxia/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Substâncias Protetoras/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Fibrose , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Estresse Oxidativo , Pericitos/patologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo
6.
FASEB J ; 33(6): 7301-7314, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30860872

RESUMO

Hypercholesterolemia is reported to increase reactive oxygen species (ROS) and to promote breast cancer progression. ROS play an important role in tumor biology, and xanthine oxidase (XO) is an enzyme that generates ROS. The effects of febuxostat (FBX), an XO inhibitor, on breast cancer cell migration under LDL stimulation in vitro and metastasis of breast cancer associated with hypercholesterolemia in vivo were studied. In vitro, FBX significantly inhibited LDL-induced ROS production and cell migration. Treatment of small interfering RNA against XO was consistent with the findings of FBX treatment. In vivo, a significant increase of tumor growth and pulmonary metastasis was observed in a xenograft mouse model with 4T1 cells on a high cholesterol diet (HCD), both of which were markedly inhibited by FBX or allopurinol treatment. Moreover, ERK represented the main target-signaling pathway that was affected by FBX treatment in a xenograft mouse model on an HCD evaluated by NanoString nCounter analysis. Consistently, MEK/ERK inhibitors directly decreased the LDL-induced cell migration in vitro. In conclusion, FBX mitigates breast cancer cell migration and pulmonary metastasis in the hyperlipidemic condition, associated with decreased ROS generation and MAPK phosphorylation. The inhibition of ERK pathways is likely to underlie the XO inhibitor-mediated suppression of breast cancer cell migration.-Oh, S.-H., Choi, S.-Y., Choi, H.-J., Ryu, H.-M., Kim, Y.-J., Jung, H.-Y., Cho, J.-H., Kim, C.-D., Park, S.-H., Kwon, T.-H., Kim, Y.-L. The emerging role of xanthine oxidase inhibition for suppression of breast cancer cell migration and metastasis associated with hypercholesterolemia.


Assuntos
Neoplasias da Mama/enzimologia , Hipercolesterolemia/complicações , Neoplasias Pulmonares/secundário , Proteínas de Neoplasias/antagonistas & inibidores , Xantina Oxidase/antagonistas & inibidores , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Animais , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Colesterol na Dieta/toxicidade , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Febuxostat/farmacologia , Febuxostat/uso terapêutico , Feminino , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/farmacologia , Distribuição Aleatória , Espécies Reativas de Oxigênio , Imagem com Lapso de Tempo , Xantina Oxidase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967113

RESUMO

The protective effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 1 inhibition against kidney ischemia-reperfusion injury (IRI) remain uncertain. The bilateral kidney pedicles of C57BL/6 mice were clamped for 30 min to induce IRI. Madin-Darby Canine Kidney (MDCK) cells were incubated with H2O2 (1.4 mM) for 1 h to induce oxidative stress. ML171, a selective NOX1 inhibitor, and siRNA against NOX1 were treated to inhibit NOX1. NOX expression, oxidative stress, apoptosis assay, and mitogen-activated protein kinase (MAPK) pathway were evaluated. The kidney function deteriorated and the production of reactive oxygen species (ROS), including intracellular H2O2 production, increased due to IRI, whereas IRI-mediated kidney dysfunction and ROS generation were significantly attenuated by ML171. H2O2 evoked the changes in oxidative stress enzymes such as SOD2 and GPX in MDCK cells, which was mitigated by ML171. Treatment with ML171 and transfection with siRNA against NOX1 decreased the upregulation of NOX1 and NOX4 induced by H2O2 in MDCK cells. ML171 decreased caspase-3 activity, the Bcl-2/Bax ratio, and TUNEL-positive tubule cells in IRI mice and H2O2-treated MDCK cells. Among the MAPK pathways, ML171 affected ERK signaling by ERK phosphorylation in kidney tissues and tubular cells. NOX1-selective inhibition attenuated kidney IRI via inhibition of ROS-mediated ERK signaling.


Assuntos
Peróxido de Hidrogênio/metabolismo , Nefropatias/enzimologia , Rim/enzimologia , Sistema de Sinalização das MAP Quinases , NADPH Oxidase 1/metabolismo , Traumatismo por Reperfusão/enzimologia , Animais , Cães , Rim/patologia , Nefropatias/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Traumatismo por Reperfusão/patologia
8.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207690

RESUMO

The protective effects of alpha-1 antitrypsin (AAT) in tacrolimus (TAC)-induced renal injury was evaluated in a rat model. The TAC group rats were subcutaneously injected with 2 mg/kg TAC every day for four weeks. The TAC with AAT group was cotreated with daily subcutaneous injections of TAC and intraperitoneal injections of AAT (80 mg/kg) for four weeks. The effects of AAT on TAC-induced renal injury were evaluated using serum biochemistry, histopathology, and Western blotting. The TAC injection significantly increased renal interstitial fibrosis, inflammation, and apoptosis as compared to the control treatment. The histopathological examination showed that cotreatment of TAC and AAT attenuated interstitial fibrosis (collagen, fibronectin, and α-SMA staining), and α-SMA expression in Western blotting was also decreased. Immunohistochemical staining for inflammation (osteopontin and ED-1 staining) revealed improved interstitial inflammation in the TAC with AAT group compared to that in the TAC group. The TAC treatment increased renal apoptosis compared to the control treatment, based on the results of increased immunohistochemical staining of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), increased caspase-3 activity, and lower Bcl-2 to Bad expression ratio. However, AAT cotreatment significantly changed these markers and consequently showed decreased apoptosis. AAT protects against TAC-induced renal injury via antifibrotic, anti-inflammatory, and antiapoptotic effects.


Assuntos
Injúria Renal Aguda , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Tacrolimo/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Fibrose , Masculino , Ratos , Ratos Sprague-Dawley , Tacrolimo/farmacologia , alfa 1-Antitripsina
9.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050202

RESUMO

In the present study, we investigated the effects of xanthine oxidase (XO) inhibition on cholesterol-induced renal dysfunction in chronic kidney disease (CKD) mice, and in low-density lipoprotein (LDL)-treated human kidney proximal tubule epithelial (HK-2) cells. ApoE knockout (KO) mice underwent uninephrectomy to induce CKD, and were fed a normal diet or high-cholesterol (HC) diet along with the XO inhibitor topiroxostat (1 mg/kg/day). HK-2 cells were treated with LDL (200 µg/mL) and topiroxostat (5 µM) or small interfering RNA against xanthine dehydrogenase (siXDH; 20 nM). In uninephrectomized ApoE KO mice, the HC diet increased cholesterol accumulation, oxidative stress, XO activity, and kidney damage, while topiroxostat attenuated the hypercholesterolemia-associated renal dysfunction. The HC diet induced cholesterol accumulation by regulating the expressions of genes involved in cholesterol efflux (Nr1h3 and Abca1) and synthesis (Srebf2 and Hmgcr), which was reversed by topiroxostat. Topiroxostat suppressed the expressions of genes related to hypercholesterolemia-associated inflammation and fibrosis in the unilateral kidney. LDL stimulation evoked changes in the cholesterol metabolism, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and NF-κB pathways in HK-2 cells, which were mitigated by XO inhibition with topiroxostat or siXDH. These findings suggest that XO inhibition exerts renoprotective effects against hypercholesterolemia-associated kidney injury. XO could be a novel therapeutic target for hypercholesterolemia-associated kidney injury in uninephrectomized patients.


Assuntos
Hipercolesterolemia/complicações , Hipercolesterolemia/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Xantina Oxidase/metabolismo , Colesterol/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Fibrose , Humanos , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Xantina Oxidase/genética
10.
J Cell Mol Med ; 20(11): 2160-2172, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27396856

RESUMO

Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)-deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP-binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2 O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N-acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE-siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE-deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/patologia , Colesterol/metabolismo , Hipoxantina/farmacologia , Acetilcisteína/farmacologia , Alopurinol/farmacologia , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/sangue , Colesterol/sangue , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células Hep G2 , Humanos , Peróxido de Hidrogênio/toxicidade , Hipercolesterolemia/patologia , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Placa Aterosclerótica/sangue , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Regulação para Cima/efeitos dos fármacos
11.
Biochim Biophys Acta ; 1853(11 Pt A): 2937-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26235438

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are calcium channels modulating important calcium-mediated processes. Recent studies implicate IP(3)R in cell metabolism, but specific evidence is missing regarding IP(3)R's effects on actual metabolic pathways and key energy metabolites. Here, we applied metabolomics and molecular biology to compare DT40 cell lines devoid of IP(3)R (KO) and its wild-type (WT) counterpart. NMR and LC-MS metabolomic data showed that the KO cell line has a very different basic energy metabolism from the WT cell line, showing enhanced Warburg effect. In particular, the KO cells exhibited significant perturbation in energy charge, reduced glutathione and NADPH ratios with slower cellular growth rate. Subsequent flow cytometry results showed that the KO cell line has a higher level of general reactive oxygen species (ROS) but has a lower level of peroxynitrites. This ROS disturbance could be explained by observing lower expression of superoxide dismutase 2 (SOD2) and unchanged expression of catalase. The higher ROS seems to be involved in the slower growth rate of the KO cells, with an ROS scavenger increasing their growth rate. However, the KO and WT cell lines did not show any noticeable differences in AMPK and phosphorylated AMPK levels, suggesting possible saturation of AMPK-mediated metabolic regulatory circuit in both cells. Overall, our study reveals IP3R's roles in ROS homeostasis and metabolic pathways as well as the effects of its KO on cellular phenotypes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , NADP/genética , Superóxido Dismutase/genética
12.
J Sci Food Agric ; 96(8): 2635-40, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26282882

RESUMO

BACKGROUND: Euphorbia kansui, a traditional medical herb, has been shown to have anti-tumour and anti-viral activities. Previously, we have reported that E. kansui increases interferon-gamma (IFN-γ) production in natural killer (NK) cells. However, it is not clear how E. kansui regulates IFN-γ secretion by NK cells. RESULTS: In this study, E. kansui was separated into six individual compounds from the same chloroform fraction so that the activity of each compound could be compared. E. kansui compounds induced IFN-γ secretion through the phosphorylation of protein kinase D and IκB kinase pathways. Furthermore, E. kansui compounds activated the translocation of p65, a sub-unit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), to the nucleus and induced NF-κB at the transcriptional level. CONCLUSION: These findings suggest that E. kansui enhances IFN-γ secretion through the NF-κB pathway in NK cells. © 2015 Society of Chemical Industry.


Assuntos
Diterpenos/química , Euphorbia/química , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon gama/metabolismo , NF-kappa B/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular , Humanos , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
13.
Nucleic Acids Res ; 41(3): 1734-49, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275564

RESUMO

Classic non-homologous end joining (C-NHEJ) is the predominant DNA double-strand break repair pathway in humans. Although seven genes Ku70, Ku86, DNA-PK(cs), Artemis, DNA Ligase IV (LIGIV), X-ray cross-complementing group 4 and XRCC4-like factor are required for C-NHEJ, several of them also have ancillary functions. For example, Ku70:Ku86 possesses an essential telomere maintenance activity. In contrast, LIGIV is believed to function exclusively in C-NHEJ. Moreover, a viable LIGIV-null human B-cell line and LIGIV-reduced patient cell lines have been described. Together, these observations suggest that LIGIV (and hence C-NHEJ), albeit important, is nonetheless dispensable, whereas Ku70:Ku86 and telomere maintenance are essential. To confirm this hypothesis, we inactivated LIGIV in the epithelial human cell line, HCT116. The resulting LIGIV-null cell line was viable, verifying that the gene and C-NHEJ are not essential. However, functional inactivation of RAD54B, a key homologous recombination factor, in the LIGIV-null background yielded no viable clones, suggesting that the combined absence of RAD54B/homologous recombination and C-NHEJ is synthetically lethal. Finally, we demonstrate that LIGIV is differentially required for certain chromosome fusion events induced by telomere dysfunction-used for those owing to the overexpression of a dominant negative version of telomere recognition factor 2, but not used for those owing to absence of Ku70:Ku86.


Assuntos
Aberrações Cromossômicas , Reparo do DNA por Junção de Extremidades , DNA Helicases/genética , DNA Ligases/fisiologia , Proteínas Nucleares/genética , Telômero/fisiologia , Antígenos Nucleares/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromátides , Dano ao DNA , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/genética , Marcação de Genes , Instabilidade Genômica , Humanos , Autoantígeno Ku , Mutação , Recombinação Genética , Reparo de DNA por Recombinação , Homeostase do Telômero , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
14.
Nucleic Acids Res ; 41(4): 2296-312, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23295675

RESUMO

The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H(2)O(2)-induced DNA damage. UVC and H(2)O(2) treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G(0), G(1) and S-phase. Rad18 was important for repressing H(2)O(2)-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G(1), indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H(2)O(2)-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H(2)O(2)-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G(1). In contrast with G(1)-synchronized cultures, S-phase cells were H(2)O(2)-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G(1) (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase.


Assuntos
Ciclo Celular/genética , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fase G1/genética , Humanos , Peróxido de Hidrogênio/toxicidade , Oxirredução , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Fase S/genética , Ubiquitina-Proteína Ligases , Ubiquitinação
15.
Exp Mol Med ; 56(5): 1066-1079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689091

RESUMO

The glycerol 3-phosphate shuttle (GPS) is composed of two different enzymes: cytosolic NAD+-linked glycerol 3-phosphate dehydrogenase 1 (GPD1) and mitochondrial FAD-linked glycerol 3-phosphate dehydrogenase 2 (GPD2). These two enzymes work together to act as an NADH shuttle for mitochondrial bioenergetics and function as an important bridge between glucose and lipid metabolism. Since these genes were discovered in the 1960s, their abnormal expression has been described in various metabolic diseases and tumors. Nevertheless, it took a long time until scientists could investigate the causal relationship of these enzymes in those pathophysiological conditions. To date, numerous studies have explored the involvement and mechanisms of GPD1 and GPD2 in cancer and other diseases, encompassing reports of controversial and non-conventional mechanisms. In this review, we summarize and update current knowledge regarding the functions and effects of GPS to provide an overview of how the enzymes influence disease conditions. The potential and challenges of developing therapeutic strategies targeting these enzymes are also discussed.


Assuntos
Glicerolfosfato Desidrogenase , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/enzimologia , Glicerolfosfato Desidrogenase/metabolismo , Glicerolfosfato Desidrogenase/genética , Animais , Mitocôndrias/metabolismo , Mitocôndrias/genética
16.
Res Sq ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798429

RESUMO

Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. Here we present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflowsimplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflowfor three use cases: bulk RNA-seq analysis with Salmon, metagenomics analysis with bioBakery, and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. While some limitations exist around workflow customization, AnVILWorkflowlowers the barrier to taking advantage of AnVIL's resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project (https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub (https://github.com/shbrief/AnVILWorkflow).

17.
Cell Death Dis ; 15(5): 365, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806451

RESUMO

Epithelial-to-mesenchymal transition (EMT) is one of the main causes of peritoneal fibrosis. However, the pathophysiological mechanisms of EMT, specifically its relationship with autophagy, are still unknown. This study aimed to evaluate the role of autophagy in transforming growth factor-beta 1 (TGF-ß1)-induced EMT in human peritoneal mesothelial cells (HPMCs). Primary cultured HPMCs were treated with TGF-ß1 (2 and 5 ng/mL) and changes in autophagy markers and the relationship between autophagy and EMT were evaluated. We also identified changes in EMT- and autophagy-related signaling pathways after autophagy and NADPH oxidase 4 (NOX4) inhibition. TGF-ß1 increased the generation of NOX4 and reactive oxygen species (ROS) in HPMCs, resulting in mitochondrial damage. Treatment with GKT137831 (20 µM), a NOX1/4 inhibitor, reduced ROS in the mitochondria of HPMC cells and reduced TGF-ß1-induced mitochondrial damage. Additionally, the indirect inhibition of autophagy by GKT137831 (20 µM) downregulated TGF-ß1-induced EMT, whereas direct inhibition of autophagy using 3-methyladenine (3-MA) (2 mM) or autophagy-related gene 5 (ATG5) gene silencing decreased the TGF-ß1-induced EMT in HPMCs. The suppressor of mothers against decapentaplegic 2/3 (Smad2/3), autophagy-related phosphoinositide 3-kinase (PI3K) class III, and protein kinase B (Akt) pathways, and mitogen-activated protein kinase (MAPK) signaling pathways, such as extracellular signal-regulated kinase (ERK) and P38, were involved in TGF-ß1-induced EMT. Autophagy and NOX4 inhibition suppressed the activation of these signaling pathways. Direct inhibition of autophagy and its indirect inhibition through the reduction of mitochondrial damage by upstream NOX4 inhibition reduced EMT in HPMCs. These results suggest that autophagy could serve as a therapeutic target for the prevention of peritoneal fibrosis in patients undergoing peritoneal dialysis.


Assuntos
Autofagia , Células Epiteliais , Transição Epitelial-Mesenquimal , NADPH Oxidase 4 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Peritônio/patologia , Pirazolonas , Piridonas
18.
J Biol Chem ; 287(17): 13686-93, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22362780

RESUMO

Nonhomologous end joining (NHEJ) is essential for efficient repair of chromosome breaks. However, the NHEJ ligation step is often obstructed by break-associated nucleotide damage, including base loss (abasic site or 5'-dRP/AP sites). Ku, a 5'-dRP/AP lyase, can excise such damage at ends in preparation for the ligation step. We show here that this activity is greatest if the abasic site is within a short 5' overhang, when this activity is necessary and sufficient to prepare such termini for ligation. In contrast, Ku is less active near 3' strand termini, where excision would leave a ligation-blocking α,ß-unsaturated aldehyde. The Ku AP lyase activity is also strongly suppressed by as little as two paired bases 5' of the abasic site. Importantly, in vitro end joining experiments show that abasic sites significantly embedded in double-stranded DNA do not block the NHEJ ligation step. Suppression of the excision activity of Ku in this context therefore is not essential for ligation and further helps NHEJ retain terminal sequence in junctions. We show that the DNA between the 5' terminus and the abasic site can also be retained in junctions formed by cellular NHEJ, indicating that these sites are at least partly resistant to other abasic site-cleaving activities as well. High levels of the 5'-dRP/AP lyase activity of Ku are thus restricted to substrates where excision of an abasic site is required for ligation, a degree of specificity that promotes more accurate joining.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Sítios de Ligação , Linhagem Celular , DNA/genética , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Humanos , Autoantígeno Ku , Oligonucleotídeos/química , Estrutura Terciária de Proteína , Proteínas/química , Proteínas Recombinantes/química , Recombinação Genética , Especificidade por Substrato
19.
Am J Nephrol ; 37(5): 491-500, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23635662

RESUMO

BACKGROUND/AIMS: Circulatory asymmetric dimethylarginine (ADMA) is correlated with proteinuria and endothelial dysfunction in patients with proteinuric renal diseases. However, it is not known whether proteinuria itself affects expression of dimethylarginine dimethylaminohydrolase (DDAH), a degrading enzyme of ADMA, in kidney. The aim of this study is to evaluate the direct effects of losartan and/or pentoxifylline on expression of renal DDAH-1 and its relation to oxidative stress in the setting of albuminuria. METHODS: Using NRK52E cells, DDAH-1 mRNA and protein were determined after exposure to albumin with losartan and/or pentoxifylline. Reactive oxygen species (ROS), PKC activity, and NOX-4 mRNA were also measured. In addition, the effect of losartan and/or pentoxifylline on renal expression of DDAH-1 and serum ADMA were evaluated in a rat model of proteinuric nephropathy. RESULTS: Exposure to albumin resulted in increased release of N-acetyl-ß-D-glucosaminidase along with an increase of TNF-α, 8-hydroxy-2'-deoxyguanosine, and angiotensin II in NRK52E cells. Losartan and pentoxifylline reversed albumin-induced decrease of DDAH-1 mRNA and protein expression and DDAH-1 activity. The effects of losartan and pentoxifylline on DDAH-1 mRNA were associated with reduction of ROS. In addition, treatment with losartan and pentoxifylline resulted in an attenuated change of renal DDAH-1 protein expression and serum ADMA levels in vivo. CONCLUSION: DDAH-1 was positively regulated by losartan and pentoxifylline with its antioxidative effect in albumin-exposed renal proximal tubular cells. Combined treatment with losartan and pentoxifylline has a direct beneficial effect on expression of renal DDAH-1, and, thus, at least in part, modulates the circulatory levels of ADMA in proteinuric nephropathy.


Assuntos
Albuminúria/enzimologia , Amidoidrolases/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Losartan/uso terapêutico , Pentoxifilina/uso terapêutico , Acetilglucosaminidase/metabolismo , Albuminúria/tratamento farmacológico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Linhagem Celular , Sequestradores de Radicais Livres/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Losartan/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pentoxifilina/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
20.
Anat Cell Biol ; 56(4): 474-481, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37694294

RESUMO

The dental characteristics created by acquired dental treatments can be used as age estimators. This pilot study aimed to analyze the correlation between the number of teeth observed for dental characteristics and chronological age and to develop new non-invasive age estimation models. Dental features on panoramic radiographs (420 radiographs of subjects aged 20-89 years) were classified and coded. The correlation between the number of teeth for each selected code (codes V, X, T, F, P, and L) and age was observed, and multiple regression was performed to analyze the relationship between them. Eleven regression models with various combinations of dental sextants were presented. The model with the data from both sides of the posterior teeth on both jaws showed the best performance (root mean square error of 14.78 years and an adjusted R2 of 0.461). The model with all teeth was the second-best. Based on these results, we confirmed statistically significant correlations between certain dental features and chronological age. We also observed that some regression models performed sufficiently well to be used as adjunctive methods in forensic practice. These results provide valuable information for the design and performance of future full-scale studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA